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Introduction

This class has three parts. In Part I, we analyze linear systems that transform a
multidimensional vector (x) into another vector (y). This transformation is often
expressed as a linear system via matrix multiplication: y = Ax. Some linear
systems can be solved exactly and uniquely, but we will also consider solution
strategies with alternative objectives when the system contains either too much
or not enough information. In Part II we shift to nonlinear systems that must be
solved approximately via iterative methods. The nonlinear methods include many
of the foundational techniques in machine learning. Part III focuses on matrix
theory, expanding our understanding of high-dimensional data.. We will learn
how to analyze and extract information frommatriceswithout a clear input/output
relationship.

Notation

We will distinguish scalars, vectors, and matrices with the following typographic
conventions:

Object Font and Symbol Examples
Scalars italicized, lowercase letters G, 
, H
Vectors bold lowercase letters x, y, n, w

Matrices bold uppercase A, A
−1, B, Γ

There are many ways to represent rows or columns of a matrix A. Since this
course uses Matlab, I think it is convenient to use a matrix addressing scheme that
reflects Matlab’s syntax. So, the 8th row of matrix A will be A(8 , :), and the 9th
column will be A(:, 9). Rows or columns of a matrix are themselves vectors, so we
choose to keep the boldface font for the matrix A even when it is subscripted. We

ix



x

could also use Matlab syntax for vectors (x(8), for example). However, the form G8
is standard across many fields of mathematics and engineering, so we retain the
common notation. The lack of boldface font reminds us that elements of vectors
are scalars in the field.

One goal of this class is to increase the precision of your mathematical writing.
We will regularly use the symbols in Table 1 to describe mathematical concepts
and relations. These symbols succinctly express mathematical ideas. For example,
we can define the set of rational numbers as

A number is rational if and only if it can be expressed
as the quotient of two integers.

with the statement
A ∈ Q⇔ ∃ ?, @ ∈ Z s.t. A = ?/@

While the latter statement is shorter, it ismore difficult to understand. Sowhen-
ever possible I recommend writing statements with as few symbols as necessary.
Rely on mathematical symbols only when a textual definition would be unwieldy
or imprecise, or when brevity is important (like when writing on a chalkboard).

Acknowledgements
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Table 1: Mathematical notation used in this book.

Symbol Read As Description
⇒ implies ? ⇒ @ means that whenever ? is true, @ must also be true.

⇔ if and only if A symmetric, stronger version of⇒. The expression
? ⇔ @ means ? ⇒ @ and @ ⇒ ?.

∀ for all Remember this symbol as an upside down “A”, as in “for All”.

∃ there exists Remember this symbol as a backwards “E”, as in “there Exists”.
To say something does not exist, use �.

∈ (∉) is (not) a member of Used to state that a single element is a member of a set, i.e. 1 ∈ Z.
To say that a set is a subset of another set, use ⊂.

s.t. such that Other texts use the symbol | (a vertical pipe) instead of “s.t.”.
Note that “s.t.” is set in normal, not italicized font.

R the real numbers The numbers along a line. The reals include both rational and
irrational numbers.

R= the set of =-dimensional Each value of = is a different set. If A ∈ R2 then A ∉ R3. Also,
vectors of real numbers R2 is not a subset of R3, etc.

Z the integers The integers contain the natural numbers (1, 2, 3, . . .), their
negatives (-1, -2, -3, . . .), and the number zero (0). The symbol
comes from the German word for “number” (Zahlen). The word
“integer” (Latin for “whole”) is used since integers have no
fractional part.

Q the rationals The rational numbers are all numbers that are the quotient of
two integers. The symbol derives from the word “quotient”.

↦→ maps to Describes the inputs and outputs of an operation. An operation
that maps a vector of reals to a real number is R= ↦→ R. An
operation that maps two integers to a rational is Z × Z ↦→ Q.

≡ is defined as Two expressions are equivalent because we have defined them as
such, not because the relationship can be shown logically. For
example, 0/1 ≡ 0 × 1−1 defines the division operator using the
multiplicative inverse.
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Chapter 1

Fields and Vectors

1.1 Algebra

Algebra is a branch of mathematics that contains symbols and a set of rules to
manipulate them.

You are probably familiar with the idea of symbols. We call them variables, and
in previous algebra courses you used them to represent unknown real numbers.
In this course we will use variables to represent vectors. Vectors are collections
of elements, such as the real numbers. When we say vector, we assume a column
vector—a vertical array of elements. A row vector is a horizontal array of elements.
We will see that column vectors are more convenient. The number of elements in
a vector is its dimension. We can write an =-dimensional vector as

x =

©­­­­«
G1
G2
...

G=

ª®®®®¬
.

We surround the elements of a vector with either parentheses ( ) or square brackets
[ ]. Straight lines | | or curlybraces { } arenot allowed, as thesehave specialmeanings.
While some vectors have elements that are real numbers, vectors themselves are not
numbers. An =-dimensional vector does not belong to the set R of real numbers; it
belongs to a special set R= of all other vectors of dimension = with real elements.

We use the rules of algebra to manipulate elements. However, only certain sets
of elements are amenable to the rules of algebra. These algebra-compatible sets are
called fields. A set of conditions, or axioms, must be true about a set before we can
consider it a field. These field axioms define the rules of algebra.

2
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After spending years studying algebra, you might think that there are many
byzantine rules that govern fields. In fact, there are only five. The five axioms
describe only two operations (addition and multiplication) and define two special
elements that must be in every field (0 and 1).

1.2 The Field Axioms

Given elements 0, 1, and 2 in a field:

1. Associativity.
0 + 1 + 2 = (0 + 1) + 2 = 0 + (1 + 2)

012 = (01)2 = 0(12)

2. Commutativity.
0 + 1 = 1 + 0
01 = 10

3. Distribution of multiplication over addition.

0(1 + 2) = 01 + 02

4. Identity. There exist elements 0 and 1, both in the field, such that

0 + 0 = 0

1 × 0 = 0

5. Inverses.

• For all 0, there exists an element (−0) in the field such that 0 + (−0) = 0.
The element −0 is called the additive inverse of 0.

• For all 0 ≠ 0, there exists an element (0−1) in thefield such that 0×0−1 = 1.
The element 0−1 is called the multiplicative inverse of 0.

It might surprise you that only five axioms are sufficient to recreate everything
you know about algebra. For example, nowhere do we state the special property
of zero that 0 × 0 = 0 for any number 0. We don’t need to state this property, as it
follows from the field axioms.

Theorem. 0 × 0 = 0.
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Proof.

0 × 0 = 0 × (1 − 1)
= 0 × 1 + 0 × (−1)
= 0 − 0
= 0

�

Similarly, we can prove corollaries from the field axioms. A corollary is a statement that follows directly
from a theorem.

Corollary. If 01 = 0, then either 0 = 0 or 1 = 0 (or both).

Proof. Suppose 0 ≠ 0. Then there exists 0−1 such that

0−101 = 0−1 × 0
1 × 1 = 0

1 = 0

A similar argument follows when 1 ≠ 0. �

The fundamental theorem of algebra relies on the above corollarywhen solving
polynomials. If we factor a polynomial into the form (G − A1)(G − A2) · · · (G − A:) = 0,
then we know the polynomial has roots A1, A2 ,. . ., A: . This is only true because the
left hand side of the factored expression only reaches zero when at least one of the
factors is zero, i.e. when G = A8 .

1.2.1 Common Fields in Mathematics

The advantage of fields is that once a set is proven to obey the five field axioms, we
can operate on elements in the field just like we would operate on real numbers.
Besides the real numbers (which the concept of fields was designed to emulate),
what are some other fields?

The rational numbers are a field. The numbers 0 and 1 are rational, so they
are in the field. Since we add and multiply rational numbers just as we do real
numbers, these operations commute, associate, and distribute. All that remains
is to show that the rationals have additive and multiplicative inverses in the field.
Let us consider a rational number ?/@, where ? and @ are integers.

• We know that −?/@ is also rational, since −? is still an integer. The additive
inverse of a rational number is in the field of rational numbers.
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• The additive inverse of ?/@ is @/?, which is also rational. The multiplicative
inverse of a rational is also in the field.

So the rational numbers are a field. What does this mean? If we are given an
algebraic expression, we can solve it by performing any algebraic manipulation
and still be assured that the answer will be another rational number.

The integers, by contrast, are not a field. Every integer has a reciprocal (2→ 1/2,
−100 → −1/100, etc.). However, the reciprocals are themselves not integers, so
they are not in the same field. The field axioms require that the inverses for every
element are members of the field. When constructing a field, every part of every
axiom must be satisfied.

Example 1.1. Let’s demonstrate why every axiom must hold in a field. Imagine
the simple equation H = 0G + 1, which we solve for G to yield

G =
H − 1
0

.

If we wanted to solve this equation using only rational numbers, we would not
need to change anything. So long as the values we input for the variables 0, 1,
and H were rational, the value of G would also be rational. We solved the equation
using field algebra, and the rationals constitute a field. Everything works out. Interestingly, the integers always have integer

additive inverses, so the solution to the equa-
tion H = G−1 is always an integer (for integer H
and 1) since we could solve the equation with
only additive inverses.

Now imagine you wanted only integer solutions. Even if the values for 0, 1,
and H were integers, there is no guarantee that G would be an integer. (0 = 2,
1 = 4, and H = 3 yields G = −1/2, for example). Because the integers are not a
field, algebra does not work on them. In particular, the integers do not have integer
multiplicative inverses (except for 1 and -1). When we divide by 0, we assumed
that the value 1/0 exists in the field, which it does not. �

1.3 Vector Addition

Addition of two vectors is defined elementwise, or element-by-element.

©­­­­«
G1
G2
...

G=

ª®®®®¬
+

©­­­­«
H1
H2
...

H=

ª®®®®¬
=

©­­­­«
G1 + H1
G2 + H2

...
G= + H=

ª®®®®¬
Since this is a direct extension of scalar addition, it is clear that vector addition

commutes [x + y = y + x] and is associative [x + y + z = (x + y) + z = x + (y + z)].
The additive inverse of a vector x (written −x) is also constructed elementwise.
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−x =

©­­­­«
−G1
−G2

...
−G=

ª®®®®¬
From our elementwise definition of vector addition, we can construct the zero

element for the vectors. We know from the field axioms that x + 0 = x, so the zero
element must be a vector of the same dimension with all zero entries. Notice that each set of =-dimensional vectors

has its own zero element. In R2, 0 =

(
0
0

)
. In

R3, 0 =
©­«
0
0
0

ª®¬.x + 0 =

©­­­­«
G1
G2
...

G=

ª®®®®¬
+

©­­­­«
0
0
...
0

ª®®®®¬
=

©­­­­«
G1 + 0
G2 + 0

...
G= + 0

ª®®®®¬
= x

1.4 Vector Multiplication is not Elementwise

What happens when we try to define multiplication as an elementwise operation?
For example ©­«

−1
0
4

ª®¬ × ©­«
0
2
0

ª®¬ = ©­«
−1 × 0

0 × 2
4 × 0

ª®¬ = ©­«
0
0
0

ª®¬ = 0.

This is bad. Very bad. Here we have an example where xy = 0, but neither x nor
y is the zero element 0. This is a direct violation of a corollary of the field axioms,
so elementwise vector multiplication is not a valid algebraic operation. On the bright side, if vectors were a field this

class would be far too short.Sadly, vectors are not a field. There is noway to definemultiplication using only
vectors that satisfies the field axioms. Nor is there anything close to a complete set
ofmultiplicative inverses, or even the element 1. Instead, wewill settle for aweaker
result—showing that vectors live in a normed inner product space. The concepts of
a vector norm and inner product will let us create most of the operations and
elements that vectors need to be a field.

Example 1.2: Do we need multiplication? When you were first taught to
multiply, it was probably introduced as a “faster” method of addition, i.e. 4 × 3 =
3+3+3+3. If so,whydoweneedmultiplication as a separate requirement for fields?
Couldn’twe simply require the additionoperator andconstructmultiplication from
it? The answer is no, for two reasons. First, the idea of multiplication as a shortcut
for addition only makes sense when discussing the nonnegative integers. What,



7

for example, does it mean to have −2.86 × −3.2? What do −2.86 or −3.2 groups
look like in terms of addition? Also, the integers are not a field!

Second, we must realize that multiplication is a much stronger relationship
between numbers. To understand why, we should start talking about the “linear”
part of linear algebra. �

1.5 Linear Systems

Linear systems have two special properties.

1. Proportionality. If the input to a linear system is multiplied by a scalar, the
output is multiplied by the same scalar: 5 (:G) = : 5 (G).

2. Additivity. If two inputs are added, the result is the sum of the original
outputs: 5 (G1 + G2) = 5 (G1) + 5 (G2).

We can combine both of these properties into a single condition for linearity.

Definition. A system 5 is linear if and only if

5 (:1G1 + :2G2) = :1 5 (G1) + :2 5 (G2)

for all inputs G1 and G2 and scalars :1 and :2.

Consider a very simple function, 5 (G) = G + 3. Is this function linear? First we
calculate the lefthand side of the definition of linearity.

5 (:1G1 + :2G2) = :1G1 + :2G2 + 3

We compare this to the righthand side.

:1 5 (G1) + :2 5 (G2) = :1(G1 + 3) + :2(G2 + 3)
= :1G1 + :2G2 + 3(:1 + :2)
≠ 5 (:1G1 + :2G2)

This does not follow the definition of linearity. The function 5 (G) = G + 3 is not
linear. Now let’s look at a simple function involving multiplication: 5 (G) = 3G. Is
this function linear?

5 (:1G1 + :2G2) = 3(:1G1 + :2G2)
= :1(3G1) + :2(3G2)
= :1 5 (G1) + :2 5 (G2)



8

The function involving multiplication is linear.
These results might not be what you expected, at least concerning the nonlin-

earity of functions of the form 5 (G) = G+1. This is probably because in earliermath
courses you referred to equations of straight lines (H = <G + 1) as linear equations.
In fact, any equation of this form (with 1 ≠ 0) is called affine, not linear.

Truly linear functions have the property that 5 (0) = 0. Addition is, in a way, This follows from proportionality. If 5 (:0) =
: 5 (0) for all :, then 5 (0)must equal zero.not “strong” enough to drive a function to zero. The expression G + H is zero only

when both G and H are zero. By contrast, the product GH is zero when either G or
H is zero.

1.6 Vector Norms

One of the nice properties of the real numbers is that they are well ordered. Being
well orderedmeans that for any two real numbers, we candeterminewhichnumber
is larger (or if the two numbers are equal). Well orderedness allows us to make all
sorts of comparisons between the real numbers.

Vectors are not well ordered. Consider the vectors
(
3
4

)
and

(
5
2

)
. Which one is

larger? Each vector has one element that is larger than the other (4 in the first, 5 in
the second). There is no unambiguous way to place all vectors in order.

This doesn’t stop us frommaking comparisons between vector quantities. Con-
sider velocity, which, contrary to how many people use the term, is a vector. Since
vectors are not ordered, we should not be able to compare velocities. Instead, we
often compare speeds, which are the magnitude of the velocity vectors. Traveling
30 mph due north and 30 mph due east are technically two different velocities.
However, they have the same magnitude (30 mph), so most people consider them
equivalent.

‖x‖ =
√

13

x =

(
3
2

)

G1 = 3

G2 = 2

Figure 1.1: The vector norm.

Vector magnitudes are calculated by taking a norm of the vector. There are
many different kinds of norms, but the most commonly used norm is the 2-norm
(or Euclidean or Pythagorean norm). We will refer to the 2-norm as simply “the
norm” unless we state otherwise. If we treat a vector as a point in =-dimensional
space, the norm is the length of the arrow drawn from the origin to that point. We
use a pair of two vertical bars (‖·‖) to represent the norm. This differentiates the
norm from the absolute value (which is, in fact, the 1-norm). Sometimes we use a
subscript to identify which norm we are taking, i.e. ‖x‖2 is the 2-norm of x.

In 2D, the norm corresponds to the hypotenuse of the right triangle with sides
equivalent to the two elements in the vector—hence the name “Pythagorean norm”
since the norm can be calculated by the Pythagorean theorem. In higher dimen-
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sions, we generalize the Pythagorean definition of the norm to

‖x‖ =
√
G2

1 + G2
2 + · · · + G2

= .

In one dimension, taking the 2-norm yields the same result as taking the absolute
value:

‖−3‖ =
√
(−3)2 = 3 = | − 3|.

Be careful not to confuse the 2-norm and the
absolute value, as they are not the same thing.
Their equivalence in one dimension is a co-
incidence. However, the absolute value is a
norm—it returns the magnitude of a number,
but strips away the direction (negative or pos-
itive).

There are two useful properties of norms that derive directly from its definition.
These properties must be true of all norms, not just the 2-norm.

1. Nonnegativity. ‖x‖ ≥ 0

2. Zero Identity. ‖x‖ = 0⇔ x = 0

There are other properties that define norms, such as the triangle inequality
(‖x + y‖ ≤ ‖x‖ + ‖y‖) or scaling (‖:x‖ = |: | ‖x‖). The nonnegativity and zero
identity properties will be the most useful in this book.

1.6.1 Generalized Norms

We mentioned above that the Euclidean (or 2-norm) is only one type of norm.
Some common norms include:

1. The 1-norm, taxicab, or Manhattan norm, is the sum of the absolute values
of the element in a vector:

‖x‖1 ≡ |G1 | + |G2 | + · · · + |G= |.
The “taxicab” name comes from distance you’d travel between two points
when driving in cities with a grid street layout (like Manhattan). If you can’t
drive diagonally through any city blocks, the distance between two points is
the 1-norm.

2. The∞-norm is the absolute value of the largest element in the vector:

‖x‖∞ ≡ max{|G1 |, |G2 |, . . . , |G= |}.

3. The 0-norm, also called the cardinality of a vector, is the number of nonzero
element in the vector:

‖x‖0 ≡ # of nonzero G8 .
The 0-norm is not a true norm since it does not satisfy all of the properties of
norms. Still, the 0-norm is useful in many machine learning applications, so
we include it here.
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All of the norms listed above are members of the family of ?-norms. In general,
the ?-norm of an =-dimensional vector x is

‖x‖? ≡
(
=∑
8=1

G
?

8

)1/?

.

Setting ? = 2 gives the Euclidian norm, and ? = 1 is the taxicab norm. As ?
approaches infinity, the ? norm becomes the ∞-norm. Setting ? = 0 would give
the 0-norm if we overlook the 1/0 that appears in the exponent—again, the 0-norm
is not a true norm, so some mathematical leniency is needed.

1.6.2 Normalized (Unit) Vectors

A vector contains information about both its magnitude and its orientation. We’ve
seen how to extract the magnitude as a scalar from the vector by taking the norm.
Is it possible to similarly separate out the vector’s orientation? Yes, by normalizing
the vector. A normalized vector (or unit vector) is any vector with magnitude equal
to one. We can convert a vector to a normalized vector by dividing each element
by the vector’s magnitude. For example

x =

(
3
−4

)
⇒ ‖x‖ =

√
32 + (−4)2 = 5.

The normalized unit vector ( x̂ ) is

x̂ =

(
3/‖x‖
−4/‖x‖

)
=

(
3/5
−4/5

)
.

Weuse thehat symbol (ˆ) over aunit vector to remindus that it has beennormalized.

x =

(
3
−4

)

‖x‖ = 5 x̂ =

(
3/5
−4/5

)
norm unit vector

scalar
multiplication

Figure 1.2: Vectors separate into a length
(norm) and direction (unit vector). The length
and direction can be combined by scalar mul-
tiplication

Intuitively, the idea of a normalized unit vector as a direction makes sense. If
a vector is a product of both a magnitude and a direction, then the vector divided
by the magnitude (the norm) should equal a direction (a unit vector), as shown in
Figure 1.2.

1.7 Scalar Vector Multiplication

We saw earlier that elementwisemultiplicationwas a terrible idea. In fact, defining
multiplication this way violates a corollary of the field axioms (xy = 0 implies that
x = 0 or y = 0). However, elementwisemultiplication doeswork in one case—scalar
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multiplication, or the product between a scalar (real number) and a vector:

:x = :

©­­­­«
G1
G2
...

G=

ª®®®®¬
=

©­­­­«
:G1
:G2
...

:G=

ª®®®®¬
where : is a scalar real number. Notice that scalar multiplication does not suffer
from the same problem as elementwise vector multiplication. If :x = 0, then either
the scalar : equals zero or the vector x must be the zero vector.

What happens when you multiply a vector by a scalar? For one, the norm
changes: Remember that

√
:2 = |: |, not : itself. We

consider the square root to be the positive root.

‖:x‖ =
√
(:G1)2 + (:G2)2 + · · · + (:G=)2

=

√
:2(G2

1 + G2
2 + · · · + G2

=)
= |: | ‖x‖

Scalar multiplication scales the length of a vector by the scalar. If the scalar is
negative, the direction of the vector “reverses”.

1.8 Dot (Inner) Product

Nowwe see whywe use the symbol × for mul-
tiplication; the dot (·) is reserved for the dot
product.

One way to think of the product of two vectors is to consider the product of
their norms (magnitudes). Such operations are common in mechanics. Work, for
example, is the product of force and displacement. However, simply multiplying
the magnitude of the force vector and the magnitude of the displacement vector
disregards the orientation of the vectors. We know from physics that only the
component of the force aligned with the displacement should count.

In general, we want an operation that multiplies the magnitude of one vector
with the projection of a second vector onto the first. We call this operation the inner
product or the dot product. Geometrically, the dot product is a measure of both the
product of the vectors’ magnitudes and how well they are aligned. For vectors x

and y the dot product is defined

x · y = ‖x‖ ‖y‖ cos�

where � is the angle between the vectors.
�

x

y

‖x‖ cos�

Figure 1.3: The projection of x onto y is a scalar
equal to ‖x‖ cos�.

If two vectors are perfectly aligned, � = 0° and the dot product is simply the
product of the magnitudes. If the two vectors point in exactly opposite directions,
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� = 180° and the dot product is −1 times the product of the magnitudes. If the
vectors are orthogonal, the angle between them is 90°, so cos� = 0 and the dot
product is zero. Thus, the dot product of two vectors is zero if and only if the

vectors are orthogonal.

1.8.1 Computing the Dot Product

We know how to calculate norms, but how do we calculate the angle between two
=-dimensional vectors? The answer is that we don’t need to. There is an easier
way to calculate x · y than the formula ‖x‖ ‖y‖ cos�.

First, we need to define a special set of vectors—the unit vectors ê8 . Unit vectors
have only a single nonzero entry, a 1 at element 8. For example,

ê1 =

©­­­­«
1
0
...
0

ª®®®®¬
, ê2 =

©­­­­«
0
1
...
0

ª®®®®¬
, . . . , ê= =

©­­­­«
0
0
...
1

ª®®®®¬
.

Every vector can be written as a sum of scalar products with unit vectors. For
example,

©­«
−3

6
2

ª®¬ = −3 ©­«
1
0
0

ª®¬ + 6 ©­«
0
1
0

ª®¬ + 2 ©­«
0
0
1

ª®¬
= −3ê1 + 6ê2 + 2ê3

In general

x = G1

©­­­­«
1
0
...
0

ª®®®®¬
+ G2

©­­­­«
0
1
...
0

ª®®®®¬
+ · · · + G=

©­­­­«
0
0
...
1

ª®®®®¬
=

=∑
8=1

G8 ê8
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Now let’s compute the dot product using the unit vector expansion for x and y.

x · y = (G1ê1 + G2ê2 + · · · + G= ê=) ·
(
H1ê1 + H2ê2 + · · · + H= ê=

)
= G1ê1 · (H1ê1 + H2ê2 + · · · + H= ê=)
+ G2ê2 · (H1ê1 + H2ê2 + · · · + H= ê=)
+ · · ·
+ G= ê= · (H1ê1 + H2ê2 + · · · + H= ê=)

Consider each of the terms G8 ê8 · (H1ê1 + H2ê2 + · · · + H= ê=). By distribution, this is
equivalent to

G8H1ê8 · ê1 + · · · + G8H 9 ê8 · ê9 + · · · + G8H= ê8 · ê= .
The only nonzero term in this entire summation is G8H8 ê8 · ê8 , which equals G8H8 . Think about the dot product ê8 · ê9 . If 8 = 9,

this product is 1 since ‖ê8 ‖ =



ê9



 = 1 and
� = 0°. However, if 8 ≠ 9, the vectors are
always orthogonal and the dot product is 0.

The dot product reduces to

x · y = G1H1 + G2H2 + · · · + G=H=

=

=∑
8=1

G8H8

Although the above formula is convenient for computing dot products, it lacks
the intuition of our previous method (x · y = ‖x‖ ‖y‖ cos�). Whenever you use
the former method, be sure to remember that you’re really calculating the product
magnitudes after one vector is projected onto the other.

1.8.2 Dot Product Summary

• Dot products are defined between two vectors with the same dimension.

• Dot products return a scalar from two vectors. This is the projected product
of the two magnitudes.

• x · y = ‖x‖ ‖y‖ cos� = G1H1 + G2H2 + · · · + G=H=
• x · y = 0⇔ x and y are orthogonal.

• Dot products commute [x · y = y · x] and distribute over addition [x · (y+ z) =
x ·y+x ·z]. There is no such thing as an associative property for dot products
since the dot product of three vectors is not defined. The dot product between
the first two vectors would produce a scalar, and the dot product between
this scalar and the third vector is not defined.



Chapter 2

Matrices

2.1 Matrix/Vector Multiplication

Let’s take stock of the operations we’ve defined so far.

• The norm (magnitude) maps a vector to a scalar. (R= ↦→ R)

• The scalar productmaps a scalar and a vector to a new vector (R×R= ↦→ R=),
but can only scale the magnitude of the vector (or flip it if the scalar is
negative).

• The dot productmaps to vectors to a scalar (R= ×R= ↦→ R) by projecting one
onto the other and multiplying the resulting magnitudes.

All of these operations appear consistent with the field axioms. Unfortunately,
we still do not have a true multiplication operation—one that can transform any
vector into any other vector. Can we define such an operation using only the above
methods?

Let’s construct a new vector y from the vector x. To be as general as possible
we should let each element in y be an arbitrary linear combination of the elements
in x:

H1 = 011G1 + 012G2 + · · · + 01=G=

H2 = 021G1 + 022G2 + · · · + 02=G=

...

H= = 0=1G1 + 0=2G2 + · · · + 0==G=

14
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The scalars 08 9 determine the relative weight of G 9 when constructing H8 . There are
=2 scalars required to unambiguously map x to y. For convenience, we collect the
set of weights into an = by = numeric grid called a matrix. If A is a real-valued matrix with dimensions

< × =, we say A ∈ R<×= and dim(A) = < × =.

A =

©­­­­«
011 012 · · · 01=
021 022 · · · 02=
...

...
. . .

...
0=1 0=2 · · · 0==

ª®®®®¬
Using the matrix A, we can write the above system of equations as

©­­«
H1
...

H=

ª®®¬ =
©­­«
011 · · · 01=
...

. . .
...

0=1 · · · 0==

ª®®¬
©­­«
G1
...

G=

ª®®¬
or, more succinctly

y = Ax.

Writing the equations in thismatrix form requires a new definition ofmultiplication
between the matrix A and the vector x. For example, we can write the following
linear system

G1 − 2G2 + G3 = 0
3G1 − G3 = 4
G2 + 3G3 = −1

in matrix form as ©­«
1 −2 1
3 0 −1
0 1 3

ª®¬ ©­«
G1
G2
G3

ª®¬ = ©­«
0
4
−1

ª®¬ .
These equations transform the input vector x into a new vector with elements 0, 4,
and −1. The first element (0) is the dot product between the first row of the matrix
and the vector: A subtle technical point: we consider a sin-

gle row of a matrix to be a vector—in fact a
column vector—to allow the dot product with
the input vector. The distinction between row
and column vectors is often glossed over by
humans but is important to computers. (See
below when we talk about the matrix trans-
pose.)

©­«
1 −2 1
3 0 −1
0 1 3

ª®¬ ©­«
G1
G2
G3

ª®¬ = ©­«
0
4
−1

ª®¬ .
Similarly, the second element in the output vector (4) is the dot product between
the second row of the matrix and the input vector,

©­«
1 −2 1
3 0 −1
0 1 3

ª®¬ ©­«
G1
G2
G3

ª®¬ = ©­«
0
4
−1

ª®¬
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and the third entry in the output is the dot product between the third row and the
input vector: ©­«

1 −2 1
3 0 −1
0 1 3

ª®¬ ©­«
G1
G2
G3

ª®¬ = ©­«
0
4
−1

ª®¬ .
2.2 Matrix Multiplication

What we have been calling “vectors” all along are really just matrices with only
one column. Thinking of vectors as matrices lets us write a simple, yet powerful,
definition of multiplication.

Definition. The product of matrices AB is a matrix C; each element 28 9 in C is the dot
product between the 8th row in A and the 9th column in B:

28 9 = A(8 , :) · B(:, 9).

This definition is perfectly consistent with matrix/vector multiplication if we
view a vector as a single-column matrix.

Example 2.1. Let’s multiply the matrices

A =

(
1 0 −2
4 3 1

)
and B =

©­«
0 1
−2 3

1 1

ª®¬ .
We’ll call the resulting matrix C. The entry 211 is the dot product between row 1 of
matrix A and column 1 of matrix B.(

−2
)
=

(
1 0 −2
4 3 1

) ©­«
0 1
−2 3

1 1

ª®¬
211 = A(1, :) · B(:, 1) = 1 × 0 + 0 × (−2) + −2 × 1 = −2

The entry 212 is the dot product between row 1 of matrix A and column 2 of
matrix B. (

−2 −1
)
=

(
1 0 −2
4 3 1

) ©­«
0 1
−2 3

1 1

ª®¬
212 = A(1, :) · B(:, 2) = 1 × 1 + 0 × 3 + −2 × 1 = −1
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The entry 221 is the dot product between row 2 of matrix A and column 1 of
matrix B. (

−2 −1
−5

)
=

(
1 0 −2
4 3 1

) ©­«
0 1
−2 3

1 1

ª®¬
221 = A(2, :) · B(:, 1) = 4 × 0 + 3 × (−2) + 1 × 1 = −5

Finally, the entry 222 is the dot product between row 2 of matrix A and column 2
of matrix B. (

−2 −1
−5 14

)
=

(
1 0 −2
4 3 1

) ©­«
0 1
−2 3

1 1

ª®¬
222 = A(2, :) · B(:, 2) = 4 × 1 + 3 × 3 + 1 × 1 = 14

�
The length of a row in A is equal to the number
of columns in A. The length of a single column
in B is equal to the number of rows in B.

In the previous example, the matrices A and B did not have the same dimen-
sions. If C = AB, each entry in the matrix C is the dot product between a row of A

and a column of B. Thus the number of columns in A must equal the number of
rows in B since the dot product is only defined for vectors of the same dimension. Matlab returns an error that “matrix dimen-

sions must agree” when multiplying non-
conformable objects.

Any matrices A and B are conformable for multiplication if the number of
columns in A matches the number of rows in B. If the dimensions of A are
< × = and the dimensions of B are = × ?, then the product will be a matrix of
dimensions < × ?. To check if two matrices are conformable, write the dimensions For the system y = Ax, if dim(A)=< × = and

dim(x)== × 1, then dim(y) = < × 1, i.e. y is a
column vector in R< .

next to each other:
dimensions of product︷           ︸︸           ︷
(< × =)(= × ?)︸︷︷︸

must agree

The inner two numbers (here = and =) must be the same. The dimensions of the
product matrix are the outer two numbers (< and ?).

Matrixmultiplication is associative [ABC= (AB)C=A(BC)] anddistributiveover
addition [A(B+C) = AB+AC] provided A, B, and C are all conformable. However,
matrix multiplication is not commutative. To see why, consider an (< × =)matrix
A and an (= × ?)matrix B. The product AB is an < × ? matrix, but the product BA

is not conformable since ? ≠ <. Even if BA were conformable, it is not the same as
the product AB:

A =

(
1 2
3 4

)
, B =

(
0 1
−1 2

)
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AB =

(
1 × 0 + 2 × (−1) 1 × 1 + 2 × 2
3 × 0 + 4 × (−1) 3 × 1 + 4 × 2

)
=

(
−2 5
−4 11

)
BA =

(
0 × 1 + 1 × 3 0 × 2 + 1 × 4
−1 × 1 + 2 × 3 −1 × 2 + 2 × 4

)
=

(
3 4
5 6

)
2.3 Identity Matrix

We need to find an element that serves as 1 for vectors. The field axioms define
this element by the property that 1 × G = G for all G in the field. For vectors, we
defined multiplication to involve matrices, so the element 1 will be a matrix that
we call the identity matrix, or I. We require that

Ix = xI = x

for all x. Assuming that x is =-dimensional, I must have = columns to be con-
formable. Also, the output of Ix has = elements, so I must have = rows. Therefore,
we know that I is a square = × = matrix whenever x has dimension =.

Consider the first row of I, i.e. I(1, :). We know from the definition of I that
I(1, :) · x = G1, so I(1, :) = (1 0 0 · · · 0). For the second row, I(2, :) · x = G2, so
I(2, :) = (0 1 0 · · · 0). In general, the 8th row of I has a 1 at position 8 and zeros
everywhere else

I =

©­­­­­«
1 0 0 0
0 1 0 · · · 0
0 0 1 0

...
. . .

...
0 0 0 · · · 1

ª®®®®®¬
.

The identity matrix I for a vector in R= is an = × = matrix with ones along the
diagonal and zeroes everywhere else. InR1, I = (1), which behaves like the real num-

ber 1.Our definition of the identity matrix also works for matrix multiplication. For
any square matrix A

IA = AI = A.

The identity matrix works on “both sides” only if the matrix A is square. If the
matrix A were not square, we would need separate identify matrices for left and
right multiplication so the dimensions are compatible for multiplication. Consider
a nonsquare matrix A5×3 with five rows and three columns. It is still true that
I5×5A5×3 = A5×3 and A5×3I3×3 = A5×3; however, notice howwe used a 5× 5 identify
matrix for left multiplication and a 3 × 3 identity matrix for right multiplication.
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2.4 Matrix Transpose

The transpose operator flips the rows and columns of a matrix. The element 08 9 in
the original matrix becomes element 0 98 in the transposed matrix. The transpose
operator is a superscript “T”, as in A

T. A transposed matrix is reflected about a Other notations for the matrix transpose in-
clude A

t and A
′. The latter is used in Matlab.diagonal drawn from the upper left to the lower right corner.(

1 2
3 4

)T

=

(
1 3
2 4

)
Transposing an < × = matrix creates an = × < matrix.

©­«
1 2
3 4
5 6

ª®¬
T

=

(
1 3 5
2 4 6

)
Transposing a column vector creates a row vector, and vice versa.

©­«
1
2
3

ª®¬
T

=
(
1 2 3

)
,

(
1 2 3

)T
=

©­«
1
2
3

ª®¬
Whydowe introduce thematrix transposenow? There are connections between

the dot product, matrix multiplication, and transposition.

2.4.1 Transposition and the Dot Product

For any vectors x and y:
x · y = x

T
y

The dot product between x and y is equivalent to the product between the trans-
posed vector x and y. Said simply, x “dot” y equals x

T “times” y. Notice that x · y ≠ xy if we forget to transpose
x. Be careful to distinguish dot products and
multiplication.

Why does x · y = x
T
y? Computing the dot product between the vectors x and y

requires both have the same dimension, whichwe’ll call =. Both vectors are column
vectors, so we can also view them as a single-columnmatrix with dimensions =×1.
The transposed vector x

T is therefore a row vector with dimensions 1 × =, and we
know the product of an 1 × = matrix with an = × 1 matrix will be a 1 × 1 matrix—
which is a scalar. By definition of matrix multiplication, x

T
y is the dot product

between the first row of x
T (which has only one row) and the first column of y
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(which has only one column). Thus, x
T
y is the dot product between vectors x and

y.

x = , y =

x · y = x
T
y

= ×

=

We will use the relationship between dot products and matrix multiplication
to solve linear statistical models later in this book. Until then, keep in mind the
convergence between these operations.

2.4.2 Transposition and Matrix Multiplication

An interesting identity relates matrix multiplication and matrix transposition. For
any matrices A and B,

(AB)T = B
T
A

T

Said in words, if we want to take the transpose of the product of two matrices,
we could equivalently transpose the two matrices first and them multiply them
in reverse order. The same idea holds when we transpose the product of several
matrices. Consider a set of : matrices A1, A2, . . ., A: . Then

(A1A2 · · ·A:−1A:)T = A
T
:A

T
:−1 · · ·A

T
2 A

T
1 .

Notice two things about this identify. First, many students confuse this identify
with the commutative property. As we’ve said before, matrix multiplication does
not commute. The above identity is unrelated to the commutative property. Sec-
ond, the identity holds for square and non-square matrices provided the matrices
are compatible for multiplication. Try to prove to yourself that if the product AB

is compatible, then the product B
T
A

T is also be compatible.
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2.5 Outer Product and Trace

If the product x
T
y is a scalar, what about the product xy

T? Imagine x and y have =
elements, making them = × 1 matrices. (Both x and y must have the same number
of elements or multiplication is impossible.) Then xy

T is the product of an = × 1
matrix and a 1 × = matrix. The product is therefore an = × = matrix. While x

T
y

and xy
T may look similar, they produce wildly different results. The former—the

dot product—is also known as the inner product since it collapses to vectors into a
scalar. The latter (xy

T) is called the outer product since it expands vectors outward The matrix formed by the outer product con-
tains all pairwise products between the ele-
ments in the two vectors.

into a matrix. While the inner (dot) product requires both vectors have the same
dimension, the outer product is compatible with any two vectors.

x = , y =

xy
T = ×

=

There is an interesting connection between the outer and inner products. The
trace of a squarematrix is the sum of its diagonal elements. For example, thematrix

A =
©­«
−1 3 4

0 2 −3
1 0 6

ª®¬
has trace The trace of a matrix A is written tr(A).

tr(A) = −1 + 2 + 6 = 7

For a challenge, show that the trace of the outer product of two vectors is equal to
the inner product of the same vectors, or

tr(xy
T) = x

T
y

Notice that this fact only works when the vectors x and y have the same dimension.
Otherwise, the inner product is not defined. Similarly, if x and y did not have the
same dimension, the outer product xy

T would not be a square matrix so the trace
would not be defined.
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2.6 Computational Complexity of Matrix Multiplication

Youmay be feeling that matrixmultiplication is tediouswork. Indeed, multiplying
two matrices requires computing many dot products, which themselves requires
many scalar multiplications. In linear algebra it is important to understand how
many operations are required to complete an operation, especially as the matrices
become very large. The computational complexity of an operation is the relationship
between the number of computations and the size of the operands. Let’s analyze
the computational complexity of matrix multiplication.

Imagine we’re multiplying two = × = matrices. The product matrix will also
have dimensions = × =. Each entry in the product matrix is computed with a dot
product between a row in the first factor and a column in the second factor. This
dot product requires = scalarmultiplications and =−1 additions. Overall, there are
=2 entries in the product matrix. If each requires a dot product, the total number
of operations is =2= multiplications and =2(= − 1) additions. We say the number
of operations required to multiply two = × = matrices is O(=3). We can perform a

The O, or “big-O” notation indicates the rate
of growth of a function for large values. Any
polynomial of degree 3 is O(3).

similar analysis with two non-square matrices. Multiplying an < × = matrix by a
= × ? matrix requires O(<=?) operations.

The number of operations required tomultiply three or morematrices depends
on the order of the multiplication. Matrix multiplication is associative, so the
product ABC can be computed as (AB)C or A(BC). Let’s count the operations for
both methods using the following sizes for A, B, and C.

A = (100 × 500)

B = (500 × 100)

C = (100 × 300)
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(AB)C =

©­­­« ×
ª®®®¬ × 100 × 500 × 100 operations

= ( ) × + 100 × 100 × 300 operations
= = 8,000,000 total operations

A(BC) = ×
©­­­« ×

ª®®®¬ 500 × 100 × 300 operations

= ×
©­­­«

ª®®®¬ + 100 × 500 × 300 operations

= = 30,000,000 total operations

In general, the best order for matrix multiplications depends on the dimensions
of the matrices. If the matrices A, B, C have dimensions

dim(A) = < × =
dim(B) = = × ?
dim(C) = ? × @

it is more efficient to compute (AB)C if

<=? + <?@ < =?@ + <=@

Otherwise, it is more efficient to compute A(BC).



Chapter 3

Rotation and Translation Matrices

A common problem inmotion biomechanics is determining the position of amulti-
bar linkage arm. For example, a two-bar linkage arm is shown in Figure 3.1. The
arm contains two rigid bars of lengths ;1 and ;2. The bars are bent at angles �1 and
�2. Given the bar lengths and the angles, can we calculate the position of the end
of the arm (the point labeled p in Figure 3.1)?

p

;1 �1

;2

�2

Figure 3.1: A two-bar linkage arm.

Multi-bar linkages might seem like nightmarish geometry problems steeped
in trigonometry; probably because they are. However, this chapter shows how
matrix multiplication provides a straightforward, consistent method for solving
problems with complex linkage arms. We will introduce two new operations:
rotation and translation. Both rotation and translation can be described usingmatrix
multiplication, and all linkage arms can be assembled from a series of rotations
and translations.

3.1 Rotation

a�

b

Figure 3.2: The vector b is equal to the vector
a rotated counter-clockwise by the angle �.

We begin by rotating vectors as shown in Figure 3.2. We start with a vector that
ends at the point a. If we rotate the vector about the origin (leaving its length
the same), where is the new endpoint (called b in Figure 3.2)? Let’s call the angle
of rotation � and define positive rotation (� > 0) to be in the counter-clockwise
direction. The counter-clockwise definition is consistent with the righthand rule
from physics. Now we can build a rotation matrix as follows:

R(�) =
(
cos� − sin�
sin� cos�

)

24
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Given an angle �, the rotation matrix R(�) is a 2 × 2 matrix containing sines and
cosines of �. Multiplying a vector by a rotationmatrixR(�) is equivalent to rotating
the vector by �. Using the labels in Figure 3.2, the position after rotation is

b = R(�)a

Let’s do an example where we rotate the vector a =

(
1
1

)
by the angle � = −135◦.

Our first step is constructing the rotation matrix:

R(−135◦) =
(
cos(−135◦) − sin(−135◦)
sin(−135◦) cos(−135◦)

)
=

(
−
√

2/2
√

2/2
−
√

2/2 −
√

2/2

)
Now we can rotate the vector a by multiplying it by our rotation matrix.

R(−135◦)a =
(
−
√

2/2
√

2/2
−
√

2/2 −
√

2/2

) (
1
1

)
=

(
0

−
√

2

)
The rotated vector points along the negative horizontal axis, as shown in Figure 3.3.

(
1
1

)

(
0

−
√

2

)
−135◦

Figure 3.3: Negative angles rotate vectors in
the clockwise direction.

3.1.1 Sequential Rotations

We can apply a sequence of rotations using successive multiplications by rotation
matrices. Let’s rotate a vector x by angle �1 followed by a second rotation of angle
�2. The first rotation is the product R(�1)x. Applying the second rotation gives
R(�2) (R(�1)x). We can drop the parentheses by the associative property of matrix
multiplication and write the result of both rotations as simply R(�2)R(�1)x.

In general, we can rotate a vector x by : angles �1, �2, . . ., �: with the expression

R(�:) · · ·R(�2)R(�1)x

Pay attention to the order of the rotation matrices. The first rotation R(�1) appears
closest to the vector x. The final rotation R(�:) is farthest to the left side since it is
applied last.

If the matrix R(�) rotates a vector by the angle �, then the matrix R(−�) should
undo the rotation since it rotates the sameamount in theoppositedirection. Indeed, Remember that sin(−�) = − sin�, cos(−�) =

cos�, and sin2 � + cos2 � = 1.
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R(�)R(−�) =
(
cos� − sin�
sin� cos�

) (
cos(−�) − sin(−�)
sin(−�) cos(−�)

)
=

(
cos� − sin�
sin� cos�

) (
cos� sin�
− sin� cos�

)
=

(
cos2 � + sin2 � cos� sin� − sin� cos�

sin� cos� − cos� sin� sin2 � + cos2 �

)
=

(
1 0
0 1

)
= I

so
R(�)R(−�)x = Ix = x

Also, notice that R(−�) is the transpose of R(�). We will explore these special
properties of rotation matrices in the coming chapters.

3.2 Translation a

b

ΔG

ΔH

Figure 3.4: Translating point a to point b in-
cludes a horizontal shift (ΔG) and a vertical
shift (ΔH).

The second operation performed by linkage arms is translation, or shifting a point
along each axis. In two dimensions, a point can be translated to a new location
by shifting it a distance ΔG along the horizontal axis and a distance ΔH along the
vertical axis (see Figure 3.4). Our goal is to find a translation matrix T(ΔG,ΔH) that
can translate vectors with matrix multiplication. Using the labels in Figure 3.4, we
are looking for a matrix T(ΔG,ΔH) such that

b = T(ΔG,ΔH)a

Unlike rotation, translation cannot be easily expressed usingmatrixmultiplication.
Translation adds a constant to a vector, and this is not a linear operation. Recall
from Section 1.5 that adding a constant is an affine operation (like the function
H = G+3). Matrix multiplication is a strictly linear operation. For two-dimensional
vectors there is no 2 × 2 matrix that behaves like a translation matrix.

a

b

Figure 3.5: Translating point a to point b in
two dimensions is equivalent to rotating the
blue vectors in three dimensions.

The good news is that we can cheat. We know how to rotate vectors, and
translation in two dimensions is equivalent to a rotation in three dimensions.
Consider the two dimensional plane shown in Figure 3.5. Our goal is to translate
from point a on the plane to point b, which is also on the plane. If we look beyond
the plane and into the third dimension, we see that a vector that points to a can be
rotated to point to b. (Depending on the orientation of the plane, we might need
to change the length of the three dimensional vector; this is easily done by scalar
multiplication, which is a linear operation.)
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It is possible to define a 3 × 3 translation matrix that shifts both the horizontal
and vertical dimensions of a vector. The translation matrix is

T(ΔG,ΔH) = ©­«
1 0 ΔG
0 1 ΔH
0 0 1

ª®¬
The 3 × 3 translation matrix is designed to translate in two dimensions. For

two dimensional vectors to be compatible we need to add a third, or “dummy”

dimension that contains the value 1. For example, the two dimensional vector
(
G
H

)
becomes the three dimensional dummy vector ©­«

G
H
1

ª®¬. We can use dummy vectors to

prove that the translation matrix does, in fact, translate:

T(ΔG,ΔH)x = ©­«
1 0 ΔG
0 1 ΔH
0 0 1

ª®¬ ©­«
G
H
1

ª®¬ = ©­«
G + ΔG
H + ΔH

1

ª®¬
Notice how the translationmatrix regenerates the value 1 in the dummydimension.
The value of the dummy dimension should never change upon either translation
or rotation. It is an arbitrary offset, analogous to the distance to the rotation point
in the dummy dimension (i.e. the distance between the plane and the starting point
of the blue vectors in Figure 3.5).

3.2.1 Combining Rotation and Translation

Unlike translation, rotation in twodimensions did not require a dummydimension.
We can add a dummy dimension to the rotation matrix to make it compatible with
translation and dummy vectors. The dummy version of the rotation matrix is

R(�) = ©­«
cos� − sin� 0
sin� cos� 0

0 0 1

ª®¬
The dummy rotation matrix also regenerates the value 1 in the dummy dimen-
sion. Using dummy dimensions makes rotation matrices and translation matrices
compatible for multiplication. In the next section we will combine rotation and
translation to analyze multi-bar linkage arms.
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3.3 Multi-bar Linkage Arms

Rotation and translation provide all the tools needed to analyze multi-bar linkage
arms like the one shown in Figure 3.1. Pay attention two details in Figure 3.1. First,
the segments and angles are numbered starting from the far end of the arm, so the
far end of segment 1 is the endpoint of the arm. Second, the angles are defined
as counter-clockwise rotations relative to a line that extends from the previous
segment. For example, the first angle (�1) measures the rotation of segment 1
starting if segment 1 were perfectly in line with segment 2. Bearing these two
details in mind, we now show how to calculate the final position of the linkage arm
using sequential translations and rotations.

We begin with the end of the arm
(point p) at the origin:

p = 0d

We use a subscript “d” to remind us that
0d is not a true zero vector, but rather
a dummy vector with the value 1 in the
final dimension.

p

Then we translate p horizontally by the
length of the first arm (;1).

p = T(;1 , 0)0d p
;1

Next we rotate the first segment by the
first angle (�1).

p = R(�1)T(;1 , 0)0d

p

;1

�1

The first arm is translated horizontally by
the length of the second arm (;2).

p = T(;2 , 0)R(�1)T(;1 , 0)0d

p

;1

�1;2
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Finally we rotate both arms by the second
angle (�2).

p = R(�2)T(;2 , 0)R(�1)T(;1 , 0)0d

p

;1 �1

;2

�2

Let’s do an example where ;1 = ;2 = 3 cm, �1 = 30◦, and �2 = 45◦. The position
of the end of the arm is

p = R(45◦)T(3, 0)R(30◦)T(3, 0)0d

=
©­«
√

2/2 −
√

2/2 0√
2/2

√
2/2 0

0 0 1

ª®¬ ©­«
1 0 3
0 1 0
0 0 1

ª®¬ ©­«
√

3/2 −1/2 0
1/2

√
3/2 0

0 0 1

ª®¬ ©­«
1 0 3
0 1 0
0 0 1

ª®¬ ©­«
0
0
1

ª®¬
=

©­«
0.259 −0.966 2.90
0.966 0.259 5.02

0 0 1

ª®¬ ©­«
0
0
1

ª®¬
=

©­«
2.90
5.02

1

ª®¬
The final position of the arm is 2.90 cm along the horizontal and 5.02 cm along the
vertical, as shown in Figure 3.6.

(
2.90 cm
5.02 cm

)
3 cm

30◦

3 cm
45◦

Figure 3.6: Example two-bar linkage arm.

3.4 Rotating Shapes

30◦

Figure 3.7: Rotating a triangle.

The matrix formalism for rotation and translation naturally extends to shapes,
paths, or other collections of points. Consider the triangle shown in Figure 3.7
with vertices at (1, 0), (2, 0), and (2, 1). We can represent the triangle by collecting
the vertices in a matrix with one column for each vertex:

X =

(
1 2 2
0 0 1

)
.

We can rotate counter-clockwise by 30◦ with the rotation matrix

R(30◦) =
(
cos 30◦ − sin 30◦
sin 30◦ cos 30◦

)
.
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We are not translating the shape—only rotating it—so there is no need for a dummy
dimension in this case. The translated shape is the product of the rotation matrix
and the matrix of vertices.

R(30◦)X =

(
cos 30◦ − sin 30◦
sin 30◦ cos 30◦

) (
1 2 2
0 0 1

)
=

(
0.866 1.732 1.232
0.500 1 1.866

)
The new vertices are (0.866, 0.500), (1.732, 1), and (1.232, 1.866). The matrix for-
malism allowed us to rotate all three points simultaneously. Computer graphics
software uses rotation and translation matrices to efficiently manipulate shapes by
matrix multiplication.



Chapter 4

Solving Linear Systems

Rememberback to algebrawhenyouwere asked to solve small systemsof equations
like

011G1 + 012G2 = H1

021G1 + 022G2 = H2

Your strategy was to manipulate the equations until they reached the form We often use the prime symbol (′) to indicate
that an unspecified new value is based on an
old one. For example, H′1 is a new value calcu-
lated from H1. In this case,

H′1 =
H1022 − 012H2
011022 − 012021

G1 = H
′
1

G2 = H
′
2

In matrix form, this process transforms the coefficient matrix A into the identity
matrix (

011 021
021 022

) (
G1
G2

)
=

(
H1
H2

)
→

(
1 0
0 1

) (
G1
G2

)
=

(
H′1
H′2

)
This leads us to our first strategy for solving linear systems of the form Ax= y.
We manipulate both sides of the equation (A and y) until A becomes the identity
matrix. The vector x then equals the transformed vector y

′. Because we will be
applying the same transformations to both A and y, it is convenient to collect them
both into an augmented matrix

(
A y

)
. For 2 × 2 system above, the augmented

matrix is (
011 012 H1
021 022 H2

)
What operations can we use to transform A into the identity matrix? There are
three operations, called the elementary row operations, or EROs:

31
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1. Exchanging two rows. Since the order of the equations in our system is
arbitrary, we can re-order the rows of the augmented matrix at will. By
working with the augmented matrix we ensure that both the left- and right-
hand sides move together.

©­«
1 2 3
4 5 6
7 8 9

ª®¬ '2↔'3−−−−−→ ©­«
1 2 3
7 8 9
4 5 6

ª®¬
2. Multiplying any row by a scalar. Again, since we are working with the

augmented matrix, multiplying a row by a scalar multiplies both the left-
and right-hand sides of the equation by the same factor.

©­«
1 2 3
4 5 6
7 8 9

ª®¬ 3'2−−→ ©­«
1 2 3

12 15 18
7 8 9

ª®¬
3. Adding a scalar multiple of any row to any other row. We use the notation
:'8 → ' 9 to denotemultiplying row '8 by the scalar : and adding this scaled
row to row ' 9 . For example:

©­«
1 2 3
4 5 6
7 8 9

ª®¬ 3'2→'1−−−−−−→ ©­«
13 17 21
4 5 6
7 8 9

ª®¬
Let’s solve the following system of equations using elementary row operations.

4G1 + 8G2 − 12G3 = 44
3G1 + 6G2 − 8G3 = 32

−2G1 − G2 = −7

This is a linear system of the form Ax= y where the coefficient matrix A and the
vector y are

A =
©­«

4 8 −12
3 6 −8
−2 −1 0

ª®¬ , y =
©­«

44
32
−7

ª®¬
The augmented matrix is therefore

©­«
4 8 −12 44
3 6 −8 32
−2 −1 0 −7

ª®¬
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Now we apply the elementary row operations.

1
4'1−−−→ ©­«

1 2 −3 11
3 6 −8 32
−2 −1 0 −7

ª®¬
−3'1→'2−−−−−−−→ ©­«

1 2 −3 11
0 0 1 −1
−2 −1 0 −7

ª®¬
2'1→'3−−−−−−→ ©­«

1 2 −3 11
0 0 1 −1
0 3 −6 15

ª®¬
Notice that after three steps we have a zero at position (2,2). We need to move this
row farther down thematrix to continue; otherwise we can’t cancel out the number
3 below it. This operation is called a pivot.

'2↔'3−−−−−→ ©­«
1 2 −3 11
0 3 −6 15
0 0 1 −1

ª®¬
1
3'2
−−−→ ©­«

1 2 −3 11
0 1 −2 5
0 0 1 −1

ª®¬
At this pointwe have amatrix in row echelon form. The bottom triangle looks like the
identity matrix. We could stop here and solve the system using back substitution:

G3 = −1
G2 + −2(−1) = 5⇒ G2 = 3

G1 + 2(3) − 3(−1) = 11⇒ G1 = 2

Or, we could keep going and place the augmented matrix into reduced row echelon
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form.

−2'2→'1−−−−−−−→ ©­«
1 0 1 1
0 1 −2 5
0 0 1 −1

ª®¬
−'3→'1−−−−−−→ ©­«

1 0 0 2
0 1 −2 5
0 0 1 −1

ª®¬
2'3→'2−−−−−−→ ©­«

1 0 0 2
0 1 0 3
0 0 1 −1

ª®¬
The left three columns are the identity matrix, so the resulting system of equations
has been simplified to

G1 = 2
G2 = 3
G3 = −1

4.1 Gaussian Elimination

Using EROs to transform the augmented matrix into the identity matrix is called
Gaussian elimination. Let’s develop an algorithm for Gaussian elimination for a
general system of equations Ax = y when A is an = × = coefficient matrix. We
begin with the augmented matrix

©­­­­«
011 012 · · · 01= H1
021 022 · · · 02= H2
...

. . .
...

0=1 0=2 · · · 0== H=

ª®®®®¬
We need the number 1 in the 011 position.

0−1
11 '1
−−−−→

©­­­­«
1 0−1

11 012 · · · 0−1
11 01= 0−1

11 H1
021 022 · · · 02= H2
...

. . .
...

0=1 0=2 · · · 0== H=

ª®®®®¬
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Now we zero out the 021 position using the first row multiplied by −021.

−021'1→'2−−−−−−−−→
©­­­­«

1 0−1
11 012 · · · 0−1

11 01= 0−1
11 H1

0 022 − 0210
−1
11 012 · · · 02= − 0210

−1
11 01= H2 − 0210

−1
11 H1

...
. . .

...
0=1 0=2 · · · 0== H=

ª®®®®¬
We keep zeroing out the entries 031 through 0=1 using the first row. We end up
with the matrix

−0=1'1→'=−−−−−−−−−→
©­­­­«
1 0−1

11 012 · · · 0−1
11 01= 0−1

11 H1
0 022 − 0210

−1
11 012 · · · 02= − 0210

−1
11 01= H2 − 0210

−1
11 H1

...
. . .

...

0 0=2 − 0=10
−1
11 012 · · · 0== − 0=10

−1
11 01= H= − 0=10

−1
11 H1

ª®®®®¬
This is looking a little complicated, so let’s rewrite the matrix as

©­­­­«
1 0′12 · · · 0′1= H′1
0 0′22 · · · 0′2= H′2
...

. . .
...

0 0′
=2 · · · 0′== H′=

ª®®®®¬
The first column looks like the identity matrix, which is exactly what we want.
Our next goal is to put the lower half of an identify matrix in the second column
by setting 0′22 = 1 and 032 , . . . , 0=2 = 0. Notice that this is the same as applying the
above procedure to the sub-matrix

©­­«
0′22 · · · 0′2= H′2
...

. . .
...

0′
=2 · · · 0′== H′=

ª®®¬
After that, we can continue recursively until the left part of the augmented matrix
is the identity matrix. We can formalize the Gaussian elimination algorithm as
follows:
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function Gaussian Elimination
for 9 = 1 to = do ⊲ For every column

0−1
9 9
' 9 ⊲ Set the element on the diagonal to 1

for 8 = 9 + 1 to = do ⊲ For every row below the diagonal
−08 9' 9 → '8 ⊲ Zero the below-diagonal element

end for

end for

end function

We’re ignoring pivoting here. In general, we
need to check that 0 9 9 ≠ 0; if it is, we swap the
row for one below that has a nonzero term in
the 9th column.

4.2 Computational Complexity of Gaussian Elimination

Howmany computational operations are needed to perform Gaussian elimination
on an = × = matrix? Let’s start by counting operations when reducing the first
column. Scaling the first row (0−1

11 '1) requires = operations. (There are =+1 entries
in the first row of the augmented matrix if you include the value H1; however, we
know the result in the first column, 0−1

11 011, will always equal the number 1; we
don’t need to compute it.) Similarly, zeroing out a single row below requires =
multiplications and = subtractions. (Again, there are = + 1 columns, but we know
the result in column 1 will be zero.) In the first column, there are = − 1 rows below
to zero out, so the total number of operations is

=︸︷︷︸
0−1

11 '1

+ 2(= − 1)=︸     ︷︷     ︸
−081'1→'8

= 2=2 − =

After we zero the bottom of the first row, we repeat the procedure on the (= − 1) ×
(= − 1) submatrix, and so on until we reach the 1 × 1 submatrix that includes only
0== . We add up the number of operations for each of these = submatrices Remember that

=∑
:=1

1 = =

=∑
:=1

: =
=(= + 1)

2

=∑
:=1

:2 =
=(= + 1)(2= + 1)

6

total operations =
=∑
:=1
(2:2 − :)

= 2
=∑
:=1

:2 −
=∑
:=1

:

=
=(= + 1)(2= + 1)

3 − =(= + 1)
2

= O(=3)
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Thus the number of operations required to bring an = × = matrix into row-echelon
form is on the order of =3. The number of operations needed to perform back
substitution and solve the system is O(=2). This raises two important points.

1. Gaussian elimination scales cubically. A systemwith twice asmanyequations
takes eight times longer to solve.

2. The computational bottleneck is generating the row echelon matrix. Back
substitution (or creating the reduced row echelon matrix) is significantly
faster.

4.3 Solving Linear Systems in Matlab

Matlab has multiple functions for solving linear systems. Given variables A and y,
you can use

• linsolve(A,y) to solve using LU decomposition, a variant of Gaussian elim-
ination.

• (A \ y) to let Matlab choose the best algorithm based on the size and
structure of A.

• rref([A y]) to compute the reduced row echelon form of the augmented
matrix.



Chapter 5

The Finite Difference Method

When you first learned about derivatives, they were probably introduced as the
limit of a finite difference

3D

3G
= lim

0→1

D(1) − D(0)
1 − 0

As the distance between points 0 and 1 shrinks to zero, the finite difference be-
comes infinitesimal. The resulting differential equations must be solved with inte-
gral calculus. This chapter presents an alternative, numerical method for solving
differential equations. Rather than shrink the finite differences all the way to zero,
we leave a small but finite gap. The resulting algebraic equations approximate the
differential equation and can be solved without any tools from calculus.

5.1 Finite Differences

: : + 1

ΔG

3D

3G
≈ D

(:+1) − D(:)
ΔG

Figure 5.1: First-order finite difference approx-
imation.

Solving a differential equation analytically yields a solution over the entire domain
(the region between the boundary conditions). By contrast, numerical methods
find solutions to a differential equation at only a discrete set of points, or nodes,
in the domain. The derivatives in the differential equation are descretized by
converting them into finite differences. For example, we can approximate a first
derivative as the change between two nodes divided by the distance between the
nodes:

3D

3G
≈ D

(:+1) − D(:)
ΔG

where D(:) is the value of the variable at the :th node. To approximate a second Wewrite the value of D at node : as D(:). Using
a superscript with parentheses avoids confu-
sion with expressions D: (the :th power of D)
and D: (the :th element of a vector named u).

derivative, we calculate the finite difference between nodes D(:+1) and D(:); and
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nodes D(:) and D(:−1). We divide this “difference between differences” by the
distance between the centers of the nodes:

32D

3G2 ≈

(
3D

3G

) (:+1)
−

(
3D

3G

) (:)
ΔG

=

D(:+1) − D(:)
ΔG

− D
(:) − D(:−1)

ΔG
ΔG

=
D(:+1) − 2D(:) + D(:−1)

ΔG2

: − 1 : : + 1

ΔG ΔG

ΔG

(
3D

3G

) (:) (
3D

3G

) (:+1)

32D

3G2 ≈
D(:+1) − 2D(:) + D(:−1)

ΔG2

Figure 5.2: The second-order finite difference
approximation is computedusing twoadjacent
first-order approximations.

5.2 Linear Differential Equations

In order to generate a set of linear algebraic equations, the starting ODE or PDE
must be linear. Linearity for differential equations means that the dependent
variable (i.e. D) only appears in linear expressions; there can be nonlinearities
involving only the independent variables. Remember that differentiation is a linear
operator, so all derivatives of D are linear.

The finite difference method will still work on
nonlinear PDEs; however, the resulting set of
equations are nonlinear.

For example, consider the PDE with dependent variable D(C , G):

C2
%D

%C
= 21

%2D

%G2 + 22 sin(G)%D
%G
+ 234

CG

This PDE is linear in D. However, the ODE

D
3D

3G
= 0

is not linear. In general, for a variable D(C , G), any terms of the form As a rule of thumb, you can tell if a PDE is
linear in D by ignoring the derivative operators
and seeing if the resulting algebraic equation
is linear in D.5 (C , G)%

=D

%C=
or 5 (C , G)%

=D

%G=

are linear.
You might be wondering why we only require that a PDE be linear in the

dependent variable. Why do nonlinearities in the independent variables not lead
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to nonlinear algebraic equations? Remember that in the finite difference method
we discretize the independent variables across a grid and solve for the dependent
variable at each node. Before solving, the value of the dependent variable is
unknown. However, the value of all the independent variables are known, i.e. we
know the location of every node in space and time. We can evaluate all terms
involving the independent variables when setting up our equations.

5.3 Discretizing a Linear Differential Equation

Converting a linear differential equation into a set of linear algebraic equations
requires three steps:

1. Divide the domain into = equally-sized intervals. Creating = intervals re-
quires = + 1 points, or nodes, labeled 0, 1, . . ., =. The spacing between each
node is ΔG = ;/= where ; is the length of the domain.

2. Starting with the interior nodes (1, 2, . . . , = − 1), we rewrite the differential
equation at each node using finite differences.

D → D(:)

3D

3G
→ D(:+1) − D(:)

ΔG

32D

3G2 →
D(:+1) − 2D(:) + D(:−1)

ΔG2

3. Add equations to enforce the boundary conditions at the boundary nodes.

For example, consider the ordinary differential equation

32D

3G2 +
3D

3G
− 6D = 0, D(0) = 0, D(1) = 3

If we divide the domain [0, 1] into four sections, then = = 4 and ΔG = ;/= =
1/4 = 0.25. We have five nodes (0, 1, 2, 3, 4), three of which are interior nodes (1,
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2, 3). We rewrite the ODE using finite differences at each of the interior nodes.

D(2) − 2D(1) + D(0)
(0.25)2 + D

(2) − D(1)
0.25 − 6D(1) = 0 [node 1]

D(3) − 2D(2) + D(1)
(0.25)2 + D

(3) − D(2)
0.25 − 6D(2) = 0 [node 2]

D(4) − 2D(3) + D(2)
(0.25)2 + D

(4) − D(3)
0.25 − 6D(3) = 0 [node 3]

which simplifies to the equations

16D(0) − 42D(1) + 20D(2) = 0

16D(1) − 42D(2) + 20D(3) = 0

16D(2) − 42D(3) + 20D(4) = 0

Now we can add equations for the boundary nodes. Node 0 corresponds to G = 0,
so the boundary condition tells us that D(0) = 0. Similarly, node 4 corresponds to
G = 1, so D(4) = 3. Combining these two boundary equations with the equations
for the interior nodes yields the final linear system

©­­­­«
1 0 0 0 0

16 −42 20 0 0
0 16 −42 20 0
0 0 16 −42 20
0 0 0 0 1

ª®®®®¬
©­­­­­«
D(0)

D(1)

D(2)

D(3)

D(4)

ª®®®®®¬
=

©­­­­«
0
0
0
0
3

ª®®®®¬
Solving by Gaussian elimination yields

©­­­­­«
D(0)

D(1)

D(2)

D(3)

D(4)

ª®®®®®¬
=

©­­­­«
0.00
0.51
1.07
1.84
3.00

ª®®®®¬
We can compare our numerical solution to the exact solution for this expression,
which is

D(G) = 3
42 − 4−3

(
42G − 4−3G )
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G Numerical Solution Exact Solution Error
0 0.00 0.00 0.0%

0.25 0.51 0.48 5.7%
0.50 1.07 1.02 4.7%
0.75 1.84 1.79 2.6%
1 3.00 3.00 0.0%

We used only five nodes to solve this ODE, yet our relative error is less than 6%!

5.4 Boundary Conditions

0 1 2 3 4

first-order forward differences

0 1 2 3 4

first-order backward differences

0 1 2 3 4

second-order differences

unknown node
known boundary condition

Figure 5.3: First-order equations use either
forward or backward differences depending
on the location of the boundary condition.
Second-order equations use both forward and
backward differences and require two bound-
ary conditions.

There are twoways towrite a finite difference approximation for the first derivative
at node :. We can write the forward difference using node : + 1:

3D

3G
→ D(:+1) − D(:)

ΔG

or we can use the backward difference using the previous node at : − 1:

3D

3G
→ D(:) − D(:−1)

ΔG

The choice of forwardorbackwarddifferencesdependson theboundary conditions
(Figure 5.3). For a first order ODE, we are given a boundary condition at either
G = 0 or G = ;. If we are given D(0), we use backward differences. If we are given
D(;), we use forward differences. Otherwise, we run out of nodes when writing
equations for the finite differences. You cannot avoid the issue by using the dif-

ference D(0) − D(1) for node 0 and D(1) − D(0)
for node 1. These equations are linearly depen-
dent, which leaves uswith too little information
when solving the system.

Second order finite differences require nodes on both sides. This is related to
the necessity of two boundary conditions, since we cannot write finite difference
approximations for nodes at either end. If your ODE comes with two boundary
conditions, you can choose either forward or backward differences to approximate
any first order derivatives.



Chapter 6

Matrix Inverse

6.1 Defining the Matrix Inverse

So far we’ve demonstrated how Gaussian elimination can solve linear systems of
the form Ax = y. Gaussian elimination involves a series of elementary row opera-
tions to transform the coefficient matrix A into the identity matrix. While Gaussian
elimination works well, our initial goal of defining an algebra for vectors requires
something stronger – a multiplicative inverse. For vectors, the multiplicative in-
verse is called a matrix inverse. For any square matrix, a matrix inverse (if it exists)
is a square matrix A

−1 such that This definition is analogous to the field axiom
that there exists 0−1 such that 0−10 = 1 for all
nonzero 0. Since scalar multiplication always
commutes, 0−10 = 00−1. Matrixmultiplication
does not commute, so we need to state this
property separately.

A
−1

A = I = AA
−1

If we could prove the existence of a matrix inverse for A, we could solve a wide
variety of linear systems, including Ax= y.

Ax = y

A
−1

Ax = A
−1

y

I x = A
−1

y

x = A
−1

y

Being amenable to Gaussian elimination is related to the existence of the matrix
inverse. While the end result is the same (a transformation of the coefficient matrix
into the identity matrix), the processes are different. The Gaussian elimination
algorithm applies a series of elementary row operations while pivoting to avoid
numerical issues. A matrix inverse (if it exists) must capture all of these operations
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in a single matrix multiplication. This condensing of Gaussian elimination is not a
trivial task.

Our first goal for this chapter is to prove the existence of the matrix inverse for
any coefficient matrix that can be solved by Gaussian elimination. Then we will
derive a method to construct the matrix inverse if it exists. The following chapter
formalizes the requirements for solvability of a linear system of equations, which
is related to the existence of the matrix inverse.

6.2 Elementary Matrices

Before proving the existence of the matrix inverse, we need to add another matrix
manipulation tool to our arsenal — the elementary matrix. An elementary matrix
is constructed by applying any single elementary row operation to the identity
matrix. For example, consider swapping the second and third rows of the 3 × 3
identity matrix: Weuse the notationEA to denote an elementary

matrix constructed using the elementary row
operation A.©­«

1 0 0
0 1 0
0 0 1

ª®¬ '2↔'3−−−−−→ ©­«
1 0 0
0 0 1
0 1 0

ª®¬ = E'2↔'3

Notice what happens when we left multiply a matrix with an elementary matrix.

E'2↔'3
©­«
1 2 3
4 5 6
7 8 9

ª®¬ = ©­«
1 0 0
0 0 1
0 1 0

ª®¬ ©­«
1 2 3
4 5 6
7 8 9

ª®¬ = ©­«
1 2 3
7 8 9
4 5 6

ª®¬
Multiplication by the elementary matrix exchanges the second and third rows —
the same operation that created the elementary matrix. The same idea works for Multiplication by an elementary matrix on

the right applies the same operation to the
columns of the matrix.

other elementary row operations, such as scalar multiplication

E3'2 =
©­«
1 0 0
0 3 0
0 0 1

ª®¬
E3'2

©­«
1 2 3
4 5 6
7 8 9

ª®¬ = ©­«
1 0 0
0 3 0
0 0 1

ª®¬ ©­«
1 2 3
4 5 6
7 8 9

ª®¬ = ©­«
1 2 3

12 15 18
7 8 9

ª®¬
and addition by a scaled row

E2'3→'2 =
©­«
1 0 0
0 1 2
0 0 1

ª®¬
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E2'3→'2
©­«
1 2 3
4 5 6
7 8 9

ª®¬ = ©­«
1 0 0
0 1 2
0 0 1

ª®¬ ©­«
1 2 3
4 5 6
7 8 9

ª®¬ = ©­«
1 2 3

18 21 24
7 8 9

ª®¬
6.3 Proof of Existence for the Matrix Inverse

Weare now ready to prove the existence of the inverse for any coefficientmatrix that
is solvable by Gaussian elimination, i.e. any square matrix that can be transformed
into the identity matrix with elementary row operations. We will prove existence
in three steps:

1. Construct a matrix P that looks like a left inverse (PA = I).

2. Show that this left inverse is also a right inverse (AP = I).

3. Show that the matrix inverse is unique, implying that P must be the inverse
of A.

Theorem. Suppose matrix A can be reduced to the identity matrix I by elementary row
operations. Then there exists a matrix P such that PA = I.

Proof. We assume that reducing A to I requires : elementary row operations. Let
E1 , . . . , E: be the associated elementary matrices. Then

E:E:−1 · · ·E2E1A = I

(E:E:−1 · · ·E2E1)A = I

PA = I

where P = E:E:−1 · · ·E2E1. �

Theorem. If PA = I then AP = I.

Proof.

PA = I

PAP = IP

P(AP) = P

Since P multiplied by AP gives P back again, AP must equal the identity matrix
(AP = I). �

Theorem. The inverse of a matrix is unqiue.
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Proof. Let A
−1 be the inverse of A, i.e. A

−1
A = I = AA

−1. Suppose there exists
another matrix P ≠ A

−1 such that PA = I = AP.

PA = I

PAA
−1 = IA

−1

PI = A
−1

P = A
−1

This contradicts our supposition that P ≠ A
−1, so A

−1 must be unique. �

6.4 Computing the Matrix Inverse

Our proof of existence for the matrix inverse provided a method to construct the
inverse. We performed Gaussian elimination on a matrix and built an elementary
matrix for each step. These elementary matrices were multiplied together to form
the matrix inverse. In practice this method would be wildly inefficient. Trans- Gaussian elimination requires O(=2) row op-

erations but O(=3) total operations. Each row
operation requires O(=) individual operations
— one for each column.

forming an = × = matrix to reduced row echelon form requires O(=2) elementary
row operations, so we would need to construct and multiply O(=2) elementary
matrices. Since naive matrix multiplication requires O(=3) operations per matrix,
constructing a matrix inverse with this method requires O(=5) operations! Gaus- The fastest matrix multiplication algorithm is

O(=2.7373), although this is not a big help in
practice.

sian elimination is O(=3), so we would be far better off avoiding the matrix inverse
entirely.

Fortunately, there are better methods for constructing matrix inverses. One of
the best is called the side-by-side method. To see how the side-by-sidemethodworks,
let’s construct an inverse for the squarematrix A. We can use Gaussian elimination
to transform A into the identity matrix, which we can represent with a series of :
elementary matrices.

E:E:−1 · · ·E2E1︸             ︷︷             ︸
A
−1

A = I

What would happen if we simultaneously apply the same elementary row opera-
tions to another identity matrix?

E:E:−1 · · ·E2E1︸             ︷︷             ︸
A
−1

I = A
−1

I = A
−1

In the side-by-side method, we start with an augmented matrix containing the
= × = matrix A and an = × = identity matrix. Then we apply Gaussian elimination
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to transform A into I. The augmented matrix ensures that the same elementary
row operations will be applied to the identity matrix, yielding the inverse of A, or Like the augmented matrix (A y), there is no

direct interpretation of (A I). It is simply a
convenientway to apply the sameEROs to both
A and I.(A I) EROs−−−−→

(
I A

−1) .
Let’s solve the following system by constructing the matrix inverse.

3G1 + 2G2 = 7
G1 + G2 = 4

In matrix form,

A =

(
3 2
1 1

)
, y =

(
7
4

)
We start with the augmented matrix for the side-by-side method.(

3 2 1 0
1 1 0 1

)
'1↔'2−−−−−→

(
1 1 0 1
3 2 1 0

)
−3'1→'2−−−−−−−→

(
1 1 0 1
0 −1 1 −3

)
−'2−−−→

(
1 1 0 1
0 1 −1 3

)
−'2→'1−−−−−−→

(
1 0 1 −2
0 1 −1 3

)
Thus, the matrix inverse is

A
−1 =

(
1 −2
−1 3

)
which we can verify by multiplication on the left and right.

A
−1

A =

(
1 −2
−1 3

) (
3 2
1 1

)
=

(
1 0
0 1

)
= I

AA
−1 =

(
3 2
1 1

) (
1 −2
−1 3

)
=

(
1 0
0 1

)
= I

Finally, we can compute the solution by matrix multiplication.

x = A
−1

y =

(
1 −2
−1 3

) (
7
4

)
=

(
−1

5

)
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The advantage of having a matrix inverse is that if only the right hand side of
a linear system changes, we do not need to retransform the coefficient matrix. For
example, to solve

3G1 + 2G2 = 1
G1 + G2 = 3

we can re-use A
−1 since A is unchanged (only y is different).

x = A
−1

y =

(
1 −2
−1 3

) (
1
3

)
=

(
−5

8

)
6.5 Numerical Issues

Matrix inversion is a powerful method for solving linear systems. However, calcu-
lating amatrix inverse should always be your last resort. There are farmore efficient
and numerically stable methods for solving linear systems. Reasons against using
a matrix inverse include:

1. Computation time. The side-by-side method is more efficient than mul-
tiplying elementary matrices for constructing matrix inverses. Regardless,
both methods are much slower than Gaussian elimination for solving linear
systems of the form Ax = y. Both the side-by-side method and Gaussian
elimination reduce an augmented matrix. For an = × = matrix A, the aug-
mented matrix for Gaussian elimination (A y) is = × (= + 1). The augmented
matrix for the side-by-side method (A I) is = × 2=. Solving for the inverse
requires nearly twice the computation as solving the linear system directly.
Having the inverse allows us to “resolve" the system with a new right hand
side vector for only the cost of a matrix multiplication. However, there are
variants of Gaussian elimination – such as LU decomposition – that allow
resolving without repeating the entire reduction of the coefficient matrix A.

2. Memory. Most large matrices in engineering are sparse. Sparse matrices con-
tain very few nonzero entries; matrices with less than 0.01% nonzero entries
are not uncommon. Examples of sparse matrices include matrices generated
from finite difference approximations or matrices showing connections be-
tween nodes in large networks. Computers store sparse matrices by only Imagine the connectionmatrix for Facebook. It

would have hundreds of millions of rows and
columns, but each person (row) would only
have nonzero entries for a few hundred people
(columns) that they knew.

storing the nonzero entries and their locations. However, there is no guaran-
tee that the inverse of a sparse matrix will also be sparse. Consider the arrow
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matrix, a matrix with ones along the diagonal and last column and row.

A =

©­­­­­­­­­­«

1 0 0 0 0 0 0 1
0 1 0 0 0 0 0 1
0 0 1 0 0 0 0 1
0 0 0 1 0 0 0 1
0 0 0 0 1 0 0 1
0 0 0 0 0 1 0 1
0 0 0 0 0 0 1 1
1 1 1 1 1 1 1 1

ª®®®®®®®®®®¬
An = × = arrow matrix has =2 entries but only 3= − 2 nonzeros. However, A 1000 × 1000 arrow matrix has less than 0.3%

nonzeros.the inverse of an arrow matrix always has 100% nonzeros. For example, the
inverse of the 8 × 8 matrix above is

A
−1 =

1
6

©­­­­­­­­­­«

5 −1 −1 −1 −1 −1 −1 1
−1 5 −1 −1 −1 −1 −1 1
−1 −1 5 −1 −1 −1 −1 1
−1 −1 −1 5 −1 −1 −1 1
−1 −1 −1 −1 5 −1 −1 1
−1 −1 −1 −1 −1 5 −1 1
−1 −1 −1 −1 −1 −1 5 1

1 1 1 1 1 1 1 −1

ª®®®®®®®®®®¬
Calculating the inverse of a large, sparse matrix could requires orders of
magnitude more memory than the original matrix. Storing – much less
computing – the inverse is impossible for some matrices.

Despite its disadvantages, the matrix inverse is still a powerful tool. The matrix
inverse is necessary for many algebraic manipulations, and the inverse can be used
to simply or prove many matrix equations. Just remember to think critically about
the need for a matrix inverse before calculating one.

6.6 Inverses of Elementary Matrices

We conclude with another interesting property of elementary matrices. We said
before that left multiplication by an elementary matrix performs an elementary
row operation (the same ERO that was used to construct the elementary matrix).
Left multiplication by the inverse of an elementary matrix “undoes” the operation
of the elementary matrix. For example, the elementary matrix E3'2 scales the
second row by two. The inverse E

−1
3'2

would scale the second row by 1/2, undoing
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the scaling by two. Similarly, E'2↔'3 swaps rows two and three, and E
−1
'2↔'3

swaps
them back. The proof of this property is straightforward.

Theorem. If the elementary matrix EA performs the elementary row operation A, then left
multiplication by the inverse E

−1
A undoes this operation.

Proof.
E
−1
A (EAA) = (E−1

A EA)A = (I)A = A

�



Chapter 7

Rank and Solvability

7.1 Rank of a Matrix

Consider the linear system

©­«
1 0 3
0 2 −4
−2 0 −6

ª®¬ ©­«
G1
G2
G3

ª®¬ = ©­«
2
−2
−4

ª®¬
and the row echelon form of the associated augmented matrix

©­«
1 0 3 2
0 2 −4 −2
−2 0 −6 −4

ª®¬
1
2'2−−−→ 2'1→'3−−−−−−→ ©­«

1 0 3 2
0 1 −2 −1
0 0 0 0

ª®¬
Notice that the last row is all zeros. We have no information about the last entry
(G3). However, this does not mean we cannot solve the linear system. Since G3 is
unknown, let us assign its value the symbol 
. Then, by back substitution

G3 = 


G2 − 2G3 = −1⇒ G2 = 2
 − 1
G1 + 3G3 = 2⇒ G1 = 2 − 3


The above linear system has not one solution, but infinitely many. There is a
solution for every value of the parameter 
, sowe say the systemhas a parameterized
solution.

Parameterized solutions are necessary any time row echelon reduction of a
matrix leads to one or more rows with all zero entries. The number of nonzero
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rows in the row echelon form of a matrix is the matrix’s rank. The rank of a matrix We denote the rank of a matrix A as rank(A).
can be calculated by counting the number of nonzero rows after the matrix is
transformed into row echelon form by Gaussian elimination. In general, if a matrix
with = columns has rank =, it is possible to find a unique solution to the system
Ax = y. If rank(A) < =, there may be infinitely many solutions. These solutions
require that we specify = − rank(A) parameters.

Matrices have both a row rank (the number of nonzero rows in row-reduced ech-
elon form) and a column rank (the number of nonzero columns in a column-reduced
echelon form). Thus the concept of rank also applies to nonsquare matrices. How-
ever, the row and column ranks are always equivalent, even if the matrix is not
square.

Theorem. The row rank of a matrix equals the column rank of the matrix, i.e. rank(A) =
rank(AT).

Proof. We will defer the proof of this theorem until after we learn about matrix
decompositions in Part III. �

The equivalence of the row and column ranks implies an upper bound on the
rank of nonsquare matrices.

Theorem. The rank of a matrix is less than or equal to the smallest dimension of the
matrix, i.e. rank(A) ≤ min(dim A).

Proof. The row rank of A is the number of nonzero rows in the row-reduced A, so
the rank of A must be less than the number of rows in A. Since the row rank is
also equal to the column rank, there must also be rank(A) nonzero columns in the
column-reduced A. So the rank of A must never be larger than either the number
of rows or number of columns in A. �

We say that a matrix is full rank if it has the maximum possible rank (rank =
for an = × = square matrix or rank min(<, =) for an < × = rectangular matrix). A
matrix that is not full rank is rank deficient.

7.1.1 Properties of Rank

The rank of a matrix is connected with many other matrix operations. Here are a
few properties of matrices and their ranks. For any < × = matrix A:

1. rank(A) ≤ min(<, =).

2. rank(A) = rank(AT), i.e. row rank equals column rank.
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3. rank(A) = 0 if and only if A is the zero matrix.

4. rank(AT
A) = rank(AA

T) = rank(A).

5. rank(AB) ≤ min{rank(A), rank(B)} provided A and B are conformable.

6. rank(A + B) ≤ rank(A) + rank(B) for any < × = matrix B.

7.2 Linear Independence

The notion of rank is deeply tied to the concept of linear independence. A vector x8

is linearly dependent on a set of = vectors x1, x2, . . ., x= if there exits coefficients 21,
22, . . ., 2= such that Note the difference between x1 , . . . , x= , a set of

= vectors; and G1 , . . . , G= , a set of = scalars that
form the elements of a vector x.

x8 = 21x1 + 22x2 + · · · + 2=x=

A set of vectors are linearly dependent if one of the vectors can be expressed as a
linear combination of some of the others. This is analogous to saying there exists
a set of coefficients 21 , . . . , 2= , not all equal to zero, such that

21x1 + 22x2 + · · · + 2=x= = 0

Imagine that a coefficient 28 ≠ 0. If we move
the term 28x8 to the other side of the equa-
tion and divide by −28 , we are back to the
x8 = 21x1 + · · · + 2=x= definition of linear inde-
pendence (although the coefficients will have
changed by a factor of −28 ).

If a matrix with = rows has rank : < =, then = − : of the rows are linearly
dependent on the other : rows. Going back to our previous example, the matrix

©­«
1 0 3
0 2 −4
−2 0 −6

ª®¬ EROs−−−−→ ©­«
1 0 3
0 1 −2
0 0 0

ª®¬
has rank 2 since there are two nonzero rows in the row-reduced matrix. Therefore,
one of the rows must be linearly dependent on the other rows. Indeed, we see that
the last row

(
−2 0 −6

)
is−2 times the first row

(
1 0 3

)
. During row reduction

by Gaussian elimination, any linearly dependent rows will be completely zeroed
out, revealing the rank of the matrix.

Rank and linear dependence tell us about the information content of a coeffi-
cient matrix. If some of the rows of the coefficient matrix are linearly dependent,
then matrix is rank deficient and no unique solution exists. These matrices are
also information deficient – we do not have one independent expression for each
variable. Without a separate piece of information for each variable, we cannot
uniquely map between the input x and the output y. However, if we introduce a
separate parameter for each zeroed row, we are artificially providing the missing
information. We can find a new solution every time we specify values for the
parameters.
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7.3 Homogeneous Systems (Ax = 0)

A linear systems of equations is homogeneous if and only if the right hand side
vector (y) is equal to the zero vector (0). Homogeneous systems always have at
least one solution, x = 0, since A0 = 0. The zero solution to a homogeneous system
is called the trivial solution. Some homogeneous systems have a nontrivial solution,
i.e. a solution x ≠ 0. If a homogeneous system has a nontrivial solution, then it has
infinitely many solutions. We prove this result below.

Theorem. Any linear combination of nontrivial solutions to a homogeneous linear system
is also a solution.

This proof is equivalent to showing that Ax =

0 satisfies our definition of a linear system:
5 (:1G1 + :2G2) = :1 5 (G1) + :2 5 (G2).Proof. Supposewe had two solutions, x and x

′, to the homogeneous system Ax = 0.
Then

A(:x + :′x′) = A(:x) +A(:′x′)
= :(Ax) + :′(Ax

′)
= :(0) + :′(0)
= 0

Since there are infinitely many scalars : and :′, we can generate infinitely many
solutions to the homogeneous system Ax = 0. �

There is a connection between the solvability of nonhomogeneous systems
Ax = y and the corresponding homogeneous system Ax = 0. If there exists at
least one solution to Ax = y and a nontrivial solution to Ax = 0, then there
are infinitely many solutions to Ax = y. To see why, let xnh be the solution
to the nonhomogeneous system (Axnh = y) and xh be a nontrivial solution to
the homogeneous system Axh = 0. Then any of the infinite linear combinations
xnh + :xh is also a solution to Ax = y since

A(xnh + :xh) = Axnh + :Axh = y + :0 = y

7.4 General Solvability

We can use the rank of the coefficient matrix and the augmented matrix to deter-
mine the existence and number of solutions for any linear system of equations.
The relationship between solvability and rank is captured by the Rouché-Capelli
theorem:
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Theorem. A linear system Ax = y where x ∈ R= has a solution if and only if the rank of
the coefficient matrix equals the rank of the augmented matrix, i.e. rank(A) = rank([A y]).
Furthermore, the solution is unique if rank(A) = =; otherwise there are infinitely many
solutions.

Proof. We will sketch several portions of this proof to give intuition about the
theorem. A more rigorous proof is beyond the scope of this class.

1. Homogeneous systems. For a homogeneous system Ax = 0, we know that
rank(A) = rank([A 0]). (Since the rank of A is equal to the number of nonzero
columns, adding another column of zeros will never change the rank.) Thus,
we know that homogeneous systems are always solvable, at least by the
trivial solution x = 0. If rank(A) = =, then the trivial solution is unique and
is the only solution. If rank(A) < =, there are infinitely many parameterized
solutions.

2. Full rank, nonhomogeneous systems. For a nonhomogeneous system (Ax =

y, y ≠ 0), we expect a unique solution if and only if adding the column
y to the coefficient matrix doesn’t change the rank. For this to be true, y

must be linearly dependent on the other columns in A; otherwise, adding a
new linearly independent column would increase the rank. If y is linearly
dependent on the = columns of A, it must be true that there exists weights
21, 22, . . ., 2= such that Take time to understand the connection be-

tween the solvability of Ax = y and the abil-
ity to express y as a linear combination of the
columns in A. This relationship is important
for Part III of the course.

21A(:, 1) + 22A(:, 2) + · · · + 2=A(:, =) = y

based on the definition of linear dependence. But the above expression can
be rewritten in matrix form as

(A(:, 1)A(:, 2) · · · A(:, =))
©­­­­«
21
22
...

2=

ª®®®®¬
= Ac = y

which shows that the system has a unique solution x = c.

3. Rank deficient, nonhomogeneous systems. Let rank(A) = : < =. Then the
row-reduced form of A will have : rows that resemble the identity matrix
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and = − : rows of all zeros:

©­­­­­­­­­­«

011 012 · · · 01: · · · 01=
021 022 · · · 02: · · · 02=

...
...

0:1 0:2 · · · 0:: · · · 0:=
0:+1,1 0:+1,2 · · · 0:+1,: · · · 0:+1,=

...
...

0=1 0=2 · · · 0=: · · · 0==

ª®®®®®®®®®®¬
EROs−−−−→

©­­­­­­­­­­­«

1 0′12 · · · 0′1: · · · 0′1=
0 1 · · · 0′2: · · · 0′2=

...
...

0 0 · · · 1 · · · 0′
:=

0 0 · · · 0 · · · 0
...

...
0 0 · · · 0 · · · 0

ª®®®®®®®®®®®¬
Now imagine we performed the same row reduction on the augmented ma-
trix (A y). We would still end up with = − : rows with zeros in the first =
columns (the columns of A):

©­­­­­­­­­­«

011 012 · · · 01: · · · 01= H1
021 022 · · · 02: · · · 02= H2

...
...

...
0:1 0:2 · · · 0:: · · · 0:= H:

0:+1,1 0:+1,2 · · · 0:+1,: · · · 0:+1,= H:+1
...

...
0=1 0=2 · · · 0=: · · · 0== H=

ª®®®®®®®®®®¬
EROs−−−−→

©­­­­­­­­­­­«

1 0′12 · · · 0′1: · · · 0′1= H′1
0 1 · · · 0′2: · · · 0′2= H′2

...
...

...
0 0 · · · 1 · · · 0′

:=
H′
:

0 0 · · · 0 · · · 0 H′
:+1

...
...

...
0 0 · · · 0 · · · 0 H′=

ª®®®®®®®®®®®¬
We know that if H′

:+1 , . . . , H
′
= = 0, we can solve this system by designating

= − : parameters for the variables G:+1 , . . . , G= for which we have no infor-
mation. However, notice what happens if any of the values H′

:+1 , . . . , H
′
= are

nonzero. Then we have an expression of the form 0 = H′
8
≠ 0, which is non-

sensical. Therefore, the only way we can solve this system is by requiring
that H′

:+1 , . . . , H
′
= = 0. This is exactly the requirement that the rank of the

augmented matrix equal :, the rank of the matrix A by itself. If any of the
H′
:+1 , . . . , H

′
= are nonzero, then the augmented matrix has one fewer row of

zeros, so the rank of the augmented matrix would be greater than the rank
of the original matrix. There are two ways to interpret this result. First, we
require that the right hand side (y) doesn’t “mess up" our system by intro-
ducing a nonsensical expression. Second, if a row 8 in the matrix A is linearly
dependent on the other rows in A, the corresponding values H8 must have the
same dependency on the other values in y. If so, when the row 8 is zeroed
out during row reduction, the value H8 will also be zeroed out, avoiding any
inconsistency.

�
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7.5 Rank and Matrix Inversion

For a general nonhomogeneous system Ax = y with A ∈ R=×= , we know that a
unique solution only exists if rank(A) = rank([A y]) = =. If rank(A) = =, we know
that A can be transformed into reduced row form without generating any rows
with all zero entries. We also know that if an inverse A

−1 exists for A, we can use
the inverse to uniquely solve for x = A

−1
y. Putting these facts together, we can

now definitely state necessary and sufficient conditions for matrix inversion:

An = × = matrix A has an inverse if and only if rank(A) = =.

7.6 Summary

We’ve shown in this chapter the tight connections between matrix inversion, solv-
ability, and the rank of a matrix. We will use these concepts many times to under-
stand the solution of linear systems. However, we’ve also argued that despite their
theoretical importance, these concepts have limited practical utility for solving lin-
ear systems. For example, computing the rank of a matrix requires transforming
the matrix into reduced echelon form. This requires the same computations as
solving a linear system involving the matrix, so one would rarely check the rank
of a coefficient matrix before attempting to solve a linear system. Instead, we will
see rank emerge as a useful tool only when considering matrices by themselves in
Part III of this course.



Chapter 8

Linear Models and Regression

In Chapter 7 we learned that not all linear systems are solvable, depending on the
amount and consistency of the information contained in the corresponding systems
of equations. Too little information yielded an infinite number of solutions, and
some systems have no solution at all. In all cases, we treated the entries of the
coefficient matrix A and the output vector y as exact. We never doubted the
accuracy of our measurements of either the system or its outputs. This view may
be sufficient for linear algebra textbooks, but it is detached from the realities of the
real world faced by engineers.

This chapter addresses two related problems. First, how do we solve linear
systems when our measurements of either the system or its outputs are noisy?
The practical solution for noisy data is to simply make more measurements, but
leads to a second problem: How do we solve a linear system when we have more
information than is required by the solvability conditions described in Chapter 7?
The answer to both of these questions is linear regression, a powerful tool that
combines linear algebra with statistics. This chapter introduces regression and the
tools used to fit linear systems to noisy data. Linear regression is the first machine
learning technique we’ve encountered, so we will present linear regression within
a general framework of minimizing a loss function. This is not the usual way to
present linear regression, but it will enable us to connect regression with other
machine learning techniques.

The following chapter (Chapter 9) focuses on the practice of linear modeling,
i.e. how to build and interpret models. You may be surprised by the flexibility
of linear models and how many systems — both linear and nonlinear — can be
analyzedwith this single technique. Furthermore, all of thesemodels can be solved
using the matrix formalism described in this chapter.

58
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8.1 The Problems of Real Data

Imagine you measured an input (G) and the corresponding output (H). You hy-
pothesized a linear relationship between G and H, i.e.

H = �G.

We refer to the unknown quantity � as a parameter. Our goal is to estimate the
value of � using our input and output measurements. If H = 2.4 when G = 2, then
you can calculate the value of the parameter � with simple algebra.

� = H/G = 2.4/2 = 1.2

You could plot the relationship between G and H, which is just the line H = 1.2G.
Given an input G, it is easily to calculate the correspondingvalue H. All of thisworks
because we’ve assumed our measurements of the input G and output H are exact.
With only oneunknown (�), we have sufficient information to calculate a valuewith
only one pair of input/output observations. However, life ismessy. Measurements
are noisy and filled with error and uncertainty. Even if the underlying relationship
between H and G was really a factor of 1.2, we would never observe a value of H
that was exactly 1.2 times G.

To compensate for the imprecision of the real world, engineers make multiple
observations of their systems. Imagine we made five “noisy” measurements of the
input G and output H, which we will call Gtrue and Htrue.

0 0.25 0.5 0.75 1

0

0.5

1

G

H

Figure 8.1: Five noisy observations (points) of
the linear relationship H = 1.2 G.

Gtrue Htrue

0.07 −0.05
0.16 0.40
0.48 0.66
0.68 0.65
0.83 1.12

We refer to our observations of G and H as “true” because they are values we have
actually measured. They are true in the sense that they appeared in the real world.
Unfortunately, each pair of measurements gives an different estimate for the value
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of the parameter �:

1. � = −0.05/0.07 = −0.7
2. � = 0.40/0.16 = 2.5
3. � = 0.66/0.48 = 1.3
4. � = 0.65/0.68 = 0.9
5. � = 1.12/0.83 = 1.3

Using Figure 8.1we can be reasonably certain that H = 1.2G is a good representation
of the relationship between H and G, so we expect that � is approximately 1.2. But
our estimates for � vary wildly, from −0.7 to 2.5, and none of the estimates match
the true value of 1.2. We could average the individual estimates to produce a single
composite result (� = 1.09), but we would still miss the true value by nearly 9%. Using the samefiveobservations and the statis-

tical techniques in this chapter, we can estimate
� to be 1.21, an error of less than 1%.

This leads us to the central question in statistical modeling: “How accurate
is our model?” So far we’ve been comparing our estimate of the parameter � to
its “real” value, but this cannot be a solution. If we knew the actual value of �
beforehand, then we don’t need to estimate � from data! In practice we will never
know the actual values of the parameters, so we cannot judge our models by the
estimates of their parameters. Instead, the measure of a model is the accuracy of
its predictions, and predictive accuracy is something we can easily quantify.

8.2 The Loss Function

After we estimate a value for the parameter �, we can make predictions using our
model. The outputs of themodel are only predictions; they have not been observed
in the real world and exist only as informed guesses made by the model. We will
call the predicted outputs from the model Hpred.

Our model’s predictions (Hpred) will never match the observed values (Htrue)
exactly. Remember that the observed values include noise from both random
fluctuations in the system and uncertainty in our measurement devices. We can
compare the measured outputs (Htrue) and the predicted outputs (Hpred) that we
calculate using our model and the observed inputs (Hpred = 1.2 Gtrue). The differ-
ences between the predicted outputs and the observed outputs (Hpred − Htrue) are
called the residuals.
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Prediction Residual
Gtrue Htrue (Hpred = 1.2 Gtrue) (Hpred − Htrue)
0.07 −0.05 0.084 0.134
0.16 0.40 0.192 −0.208
0.48 0.66 0.576 −0.084
0.68 0.65 0.816 0.166
0.83 1.12 0.996 −0.124

Our goal when fitting a model (finding values for the unknown parameters) is
to minimize the residuals. But “minimizing the residuals” is subjective. We need a
method to penalize large residuals and encourage small ones, and there are many
choices for converting a residual into a penalty. For example, we might accept one
very large residual if doing so makes all the other residuals tiny. Alternatively,
we might want all of our residuals to be of a similar size so our model is equally
uncertain over all possible inputs. The choice of penalties is entirely up to us. There
is no wrong answer, but different penalties will give different parameter estimates
for the same data.

The penalties calculated from the residuals is called the loss. There are many
loss functions, eachwith strengths andweaknesses; however, all loss functionsmust
have two properties. First, the loss must never be negative. Negative penalties are
nonsensical and lead to problems during minimization. Second, the loss should
be zero only when the corresponding residual is zero (i.e. when Hpred = Htrue). If
there is any discrepancy between a model’s predictions and an observed value,
there must also be a nonzero loss to signal that the model’s predictions could be
improved. Conversely, any improvement in the model’s predictions — no matter
how small — must also lead to a decrease in the loss.

There are two common loss functions that satisfy the above properties. The
first is the absolute loss

absolute loss(Htrue , Hpred) =
��Htrue − Hpred�� .

The second is the quadratic loss

quadratic loss(Htrue , Hpred) =
(
Htrue − Hpred

)2
.

For fitting linear models we will use the quadratic loss because it has several
advantages over the absolute loss:

1. Quadratic functions are continuously differentiable, while the derivative of
the absolute value is discontinuous at zero. A continuous first derivative
makes it easy to optimize functions involving the squared error.
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2. The quadratic loss more harshly penalizes predictions that are far from the
observed values. If a prediction is twice as far from an observation, the
quadratic loss increases by a factor of four while the absolute loss only dou-
bles. We will see shortly that assigning large penalties to far away points is
more intuitive.

3. For linearmodels, there is always a single solutionwhenminimizingquadratic
loss, but there can be infinitely many solutions that minimize the absolute
loss. We prefer having a unique solution whenever possible.

8.2.1 Loss Depends on Parameters, Not Data

The loss function quantifies how we’ve chosen to penalize the differences between
the model predictions and the observed data. We must always remember that the
loss is a function of the model’s parameters, not the data. We will refer to the loss
function as !, so the quadratic loss for a single piece of data is

!8 =
(
H

pred
8
− Htrue

8

)2
.

The subscript 8 reminds us that we are only considering the loss of one (Gtrue, Htrue)
pair in the dataset. Our simple linear model has the form Hpred = �Gtrue, which we
substitute into the loss function.

!8 =
(
�Gtrue

8 − Htrue
8

)2

Consider the second observation from the dataset for Figure 8.1: Gtrue
2 = 0.16,

Htrue
2 = 0.40. The loss for this single point is

!2 =
(
0.16� − 0.40

)2
.

The loss !2 depends on �, not the quantities Gtrue
2 and Htrue

2 . We minimize the
model’s loss by adjusting �. The training data Gtrue and Htrue are fixed — we
measured them before we started fitting the model. This can seem unusual, as
previous math courses have conditioned us to always think of G and H as variables,
not fixed quantities. We will write the loss function as !(�) to remind us that loss
is a function of the model’s parameters.
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8.2.2 Minimizing the Total Loss

In the previous section we discussed the loss for a single point. Let’s write out the
loss for all five points in the dataset from Figure 8.1.

!1(�) =
(
0.07� + 0.05

)2

!2(�) =
(
0.16� − 0.40

)2

!3(�) =
(
0.48� − 0.66

)2

!4(�) =
(
0.68� − 0.65

)2

!5(�) =
(
0.83� − 1.12

)2

There is only one parameter � that appears in all five losses. When we fit a model
by selecting a value for �, our goal is tominimize the total loss across all five points:

total loss = !(�) = !1 + !2 + !3 + !4 + !5 =
∑
8

!8 .

All of the individual losses depend on �, and this shared dependence complicates
our search for a single “best” parameter value. Imagine we focused only on the
first loss, !1. The value of � that minimizes !1 is � = −0.05/0.07 ≈ −0.714. This
value for � is ideal for the loss !1, setting this individual loss to zero. However, the
value � = −0.714 is a terrible choice for the other points in the dataset.

!1(−0.714) = [0.07(−0.714) + 0.05]2 = 0

!2(−0.714) = [0.16(−0.714) − 0.40]2 = 0.264

!3(−0.714) = [0.48(−0.714) − 0.66]2 = 1.005

!4(−0.714) = [0.68(−0.714) − 0.65]2 = 1.289

!5(−0.714) = [0.83(−0.714) − 1.12]2 = 2.933

The total loss at for the parameter value � = −0.714 is

!(−0.714) = 0 + 0.264 + 1.005 + 1.289 + 2.933 = 5.492.

Compare this loss to that of the optimal parameter value � = 1.21 (which we will
find shortly):

!(1.21) = 0.018 + 0.043 + 0.006 + 0.230 + 0.013 = 0.110.
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In section 8.3wewill learn how tofindparameter values thatminimize the total loss
across the entire dataset. Until then, remember that the “best” parameter values
minimize the total loss, and the best parameters are rarely optimal for minimizing
the loss of an individual point taken alone.

8.2.3 Loss vs. Error

Themachine learning community almost exclusively uses the term loss to describe
the penalized difference between a model’s outputs and the training data. Al-
though linear regression is a type of machine learning, the linear modeling field
often refers to loss as “error” and quadratic loss as “squared error”. Minimizing
the quadratic loss is therefore known as “least squares” estimation. All of these
terms are correct, and you should be familiar with both conventions. We have
decided to use loss exclusively throughout the book for two reasons.

1. Consistency. One of our goals is to unify the presentation of machine learn-
ing and draw parallels between linear and nonlinear models. Subsequent
chapters on machine learning use “loss” as it is standard in those fields, and
we want to avoid duplicate terms.

2. Clarity. Some students find it difficult to distinguish the many types of
error in linear models. There is error in the measured training data, and the
parameter estimates have an associated standard error. Referring to the loss
as “error” only adds to the confusion. Also, students often associate the term
“error” with uncertainty, which is not a correct interpretation of a model’s
loss. Models have loss not because their predictions are uncertain (at least
for deterministic models), but because they simplified representations of the
real world. We like the term “loss” as a reminder that switching from data
to a model causes an inherent loss of information.

All nomenclature is preference, and there is no unique solution. We will use
margin notes to remind the reader of alternative names.

8.3 Fitting Linear Models

The total loss function provides a quantitative measure of how well our model fits
the training data. There are three steps for minimizing the total loss of a linear
model.

1. Choose a model that you think explains the relationship between inputs (G)
and outputs (H). The models should contain unknown parameters (�) that
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youwill fit to a set of observations. Themodel should be linear with respect

to the parameters (�). It does not need to be linearwith respect to the inputs

(G) or outputs (H). We will discuss the linearity of models in Chapter 9.

2. To find values for the unknown parameters (�), we will minimize the total
loss between the observed outputs (Htrue) and the outputs predicted from the
model

min
�

∑
data

!8(�)

or, for the specific case when we choose the quadratic loss,

min
�

∑
8

(
H

pred
8
− Htrue

8

)2
.

Substitute the model you selected in Step 1 in place of Hpred in the above
minimization.

3. Minimize the function by taking the derivative of the total loss and setting
it equal to zero. Solve for the unknown parameters �. You should also
check that your solution is a minimum, not a maximum or inflection point
by checking that the second derivative is positive.

8.3.1 Single Parameter, Constant Models: H = �0

The simplest linear model has only a single parameter and no dependence on the
inputs:

Hpred = �0.

This might seem like a silly model. Given an input observation Gtrue, the model
ignores the input and predicts that Hpred will always be equal to �0. For example,
imagine we are predicting someone’s height (Hpred) given their age (Gtrue). Rather
thanmake a prediction based on the person’s age, we simply guess the same height
for everyone (�0).

Regardless of the utility of such a simple model, let’s fit it to a set of = pairs of
observations (Gtrue

8
, Htrue

8
). We’ve already completed Step 1 by choosing the model

Hpred = �0. We begin Step 2 by writing our objective: to choose a value for �0 using
the = observations that minimizes the total loss:

min
�0

=∑
8=1

(
H

pred
8
− Htrue

8

)2
.
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Now we substitute our model in place of Hpred, making our objective

min
�0

=∑
8=1

(
�0 − Htrue

8

)2
.

To minimize the loss we find where the derivative of the total loss with respect to

the parameter �0 is zero. Remember that the derivative of a sum is the
sum of the derivative.

Also, the sum
=∑
8

� = =�

for any value � that does not depend on 8.

3

3�0

(
=∑
8=1
(�0 − Htrue

8 )
2

)
= 0

=∑
8=1

(
3

3�0
(�0 − Htrue

8 )
2
)
= 0

=∑
8=1

2(�0 − Htrue
8 )(1) = 0

2
=∑
8=1
(�0 − Htrue

8 ) = 0

=∑
8=1

�0 −
=∑
8=1

Htrue
8 = 0

=�0 −
=∑
8=1

Htrue
8 = 0

We can rearrange the final equation and discover that the optimal value for the
parameter �0 is

�0 =
1
=

=∑
8=1

Htrue
8 = mean[Htrue].

If our strategy is to always guess the same output value (�0), the best value to guess
is the mean of the observed outputs Htrue. Said another way, the mean is the best
fit of a constant model to a set of data. If we need to represent a set of numbers
with a single number, choosing the mean minimizes the quadratic loss. The quadratic loss is also called the “squared

error”, so the least squares estimator mini-
mizes is also said to minimize the “sum of
squares”.

A couple interesting things come from this result. First, now you know where
the mean comes from. It is the least squares estimate for a set of points. (The phase
“least squares” is a convenient way of saying “minimizes the sum of the quadratic
loss”.) Second, the mean does not minimize the absolute value of the residuals —
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this is a common misconception! If we repeated the same calculation using the
absolute loss instead of the quadratic loss wewould discover that the least absolute
estimator for a set of numbers is the median, not the mean. Going further, if we make our loss function

binary (the loss is zero if Hpred = Htrue and
one otherwise), the best estimator is called the
mode — the most frequent value in the set of
observed outputs.

8.3.2 Two Parameter Models: H = �0 + �1G

Let’s fit amore complicatedmodel that uses the observed inputs Gtrue whenmaking
output predictions Htrue. Our model has the form

Hpred = �0 + �1G
true

with two unknown parameters �0 and �1. This is a linear model with respect to
the parameters. We discovered earlier that the functions of the form H = �0 + �1G
are not linear with respect to G (they are affine), but remember that Gtrue is not an
independent variable in the model. It is a known, observed value — a constant.
The unknowns in a linear model are the parameters, not H or G.

Now that we’ve chosen ourmodel, wewrite our objective: tominimize the total
quadratic loss.

min
�0 ,�1

=∑
8=1

(
H

pred
8
− Htrue

8

)2

Notice we are minimizing over both parameters �0 and �1. Substituting our model
for the value Hpred yields

min
�0 ,�1

=∑
8=1

(
�0 + �1G

true
8 − Htrue

8

)2

The total loss is minimized when the derivatives with respect to both �0 and �1 are
zero. Let’s start by taking the derivative or the loss with respect to �0. We are using partial derivatives since our loss

is a function of more than one unknown pa-
rameter.
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%

%�0

=∑
8=1

(
�0 + �1G

true
8 − Htrue

8

)2
=

=∑
8=1

%

%�0

(
�0 + �1G

true
8 − Htrue

8

)2

= 2
=∑
8=1

(
�0 + �1G

true
8 − Htrue

8

)
= 2

(
=∑
8=1

�0 +
=∑
8=1

�1G
true
8 −

=∑
8=1

Htrue
8

)
= 2

(
=�0 + �1

=∑
8=1

Gtrue
8 −

=∑
8=1

Htrue
8

)

We set this derivative equal to zero and solve for �0. We call �0 (the affine parameter in a linear
model) the grand mean since it equals the mean
of the outputs when all inputs are zero.

�0 =
1
=

=∑
8=1

Htrue
8 − �1

1
=

=∑
8=1

Gtrue
8

= mean[Htrue] − �1mean[Gtrue]

We see that �0 depends on the mean input, the mean output, and the parameter �1.
Let’s substitute our value for �0 into the total loss function.

=∑
8=1

(
�0 + �1G

true
8 − Htrue

8

)2
=

=∑
8=1

(
mean[Htrue] − �1mean[Gtrue] + �1G

true
8 − Htrue

8

)2

=

=∑
8=1

(
�1

(
Gtrue
8 −mean[Gtrue]

)
−

(
Htrue
8 −mean[Htrue]

) )2

Nowwe find the optimal value for the parameter �1. First we differentiate the total
loss with respect to �1.

%

%�1

=∑
8=1

(
�1

(
Gtrue
8 −mean[Gtrue]

)
−

(
Htrue
8 −mean[Htrue]

) )2
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=

=∑
8=1

%

%�1

(
�1

(
Gtrue
8 −mean[Gtrue]

)
−

(
Htrue
8 −mean[Htrue]

) )2

= 2
=∑
8=1

(
�1

(
Gtrue
8 −mean[Gtrue]

)
−

(
Htrue
8 −mean[Htrue]

) ) (
Gtrue
8 −mean[Gtrue]

)
= 2

=∑
8=1

(
�1

(
Gtrue
8 −mean[Gtrue]

)2 −
(
Gtrue
8 −mean[Gtrue]

) (
Htrue
8 −mean[Htrue]

) )
We set the derivative equal to zero and solve for the parameter �1.

�1 =

=∑
8=1

(
Gtrue
8 −mean[Gtrue]

) (
Htrue
8 −mean[Htrue]

)
=∑
8=1

(
Gtrue
8 −mean[Gtrue]

)2

Let’s try fitting the expression Hpred = �0 + �1G
true to the data from earlier in this

chapter.

Gtrue Htrue

0.07 −0.05
0.16 0.40
0.48 0.66
0.68 0.65
0.83 1.12

First we calculate the means of the inputs and outputs.

mean[Gtrue] = (1/5)(0.07 + 0.16 + 0.48 + 0.68 + 0.83) = 0.44
mean[Htrue] = (1/5)(−0.05 + 0.40 + 0.66 + 0.65 + 1.12) = 0.56

Now we can calculate the value for the parameter �1. It’s easiest to make a table.

Gtrue Htrue (Gtrue −mean[Gtrue])(Htrue −mean[Htrue]) (Gtrue −mean[Gtrue])2

0.07 −0.05 (0.07 − 0.44)(−0.05 − 0.56) = 0.23 (0.07 − 0.44)2 = 0.14
0.16 0.40 (0.16 − 0.44)(0.40 − 0.56) = 0.044 (0.16 − 0.44)2 = 0.081
0.48 0.66 (0.48 − 0.44)(0.66 − 0.56) = 0.0037 (0.48 − 0.44)2 = 0.0013
0.68 0.65 (0.68 − 0.44)(0.65 − 0.56) = 0.022 (0.68 − 0.44)2 = 0.056
0.83 1.12 (0.83 − 0.44)(1.12 − 0.56) = 0.22 (0.83 − 0.44)2 = 0.15
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�1 =

∑=
8=1

(
Gtrue
8
−mean[Gtrue]

) (
Htrue
8
−mean[Htrue]

)∑=
8=1

(
Gtrue
8
−mean[Gtrue]

)2

=
0.23 + 0.044 + 0.0037 + 0.022 + 0.22
0.14 + 0.081 + 0.0013 + 0.056 + 0.15

= 1.21

We can use the value of the parameter �1 to find the other parameter �0.

�0 = mean[Htrue] − �1mean[Gtrue]
= 0.56 − (1.21)(0.44)
= 0.020

According to our five observations, the best fit least squares estimate is

H = 0.020 + 1.21G.

This agrees well with our hypothesized relationship that H = 1.2G.

8.4 Matrix Formalism for Linear Models

You might be thinking that there has to be an easier method for fitting linear
models. Finding formulae for the parameters is unwieldy, and the problem only
worsens as the number of parameters grows. Fortunately, linear algebra can help.

Let’s return to our two parametermodel H = �0+�1G. Using the five data points
from the previous section, we can write five linear equations, one for each point.

−0.05 = �0 + 0.07�1 + &1

0.40 = �0 + 0.16�1 + &2

0.66 = �0 + 0.48�1 + &3

0.65 = �0 + 0.68�1 + &4

1.12 = �0 + 0.83�1 + &5

Allwe’ve done towrite these equations is substituted the observed values for G and The parameters �0 and �1 are the same for ev-
ery equation, but each equation has its own
residual term. In some fields the residual
terms are called “errors”.

H and added an residual term (&8). Remember that each observation is imprecise, so
the observed value of H will never exactly equal the predicted value �0+�1G. Since
our equations must be exact, we add a term to each equation to hold the residual
between the predicted and observed values. The same equations can be written in
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matrix form as ©­­­­«
−0.05
0.40
0.66
0.65
1.12

ª®®®®¬
=

©­­­­«
1 0.07
1 0.16
1 0.48
1 0.68
1 0.83

ª®®®®¬
(
�0
�1

)
+

©­­­­«
&1
&2
&3
&4
&5

ª®®®®¬
.

Or, more succinctly,
y = X# + &.

There are several noteworthy things about the above expression.

• The variable y is a vector of the outputs (responses), & is a vector of residuals,
and # is a vector of the unknown parameters.

• The inputs (or predictor variables) form a matrix X called the model matrix.

• The first column in X is all ones. This column corresponds to the constant
parameter in the model, �0.

• The unknowns in the equation are the parameters in the vector #, not the
values in the matrix X. The values in X are known inputs from our dataset. The residuals & are also unknown, but we do

not solve for these explicitly. Once we have
estimates for the parameters, we can calculate
the residuals using & = y − X#.

Fitting a linear model involves finding a set of values for the vector #. There are
a few complications to solving the linear system y = X# + &. First, our goal is not
to find just any values for the parameters in #, but to find the values that minimize
the square of the residual terms in & (i.e. the least squares solution). Second, the
matrix X is almost never square. We often have more rows (observations) that we
have columns (parameters) to compensate for the noise in our measurements.

Fortunately, there is a tool from matrix theory — the pseudoinverse — that
overcomes both these difficulties. The least squares solution to the problem y =

X# + & is
# = X

+
y

where the matrix X
+ is the pseudoinverse of the matrix X.

8.5 The Pseudoinverse

Recall that a matrix is invertible if and only if it is square and full rank. For linear
models the model matrix X is almost never square, so the matrix inverse X

−1 does
not exist. However, all nonsquare matrices have a pseudoinverse that somewhat
approximates the behavior of the true inverse. Below are some properties of the The pseudoinverse is also called the Moore-

Penrose inverse.pseudoinverse.
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1. The pseudoinverse X
+ exists for any matrix X.

2. The pseudoinverse of a matrix is unique.

3. If a square matrix X has a true inverse X
−1, then X

+ = X
−1.

4. The pseudoinverse of a pseudoinverse is the original matrix: (X+)+ = X.

5. If dim(X) = < × =, then dim(X+) = = × <.

6. It is not generally true that X
+

X = XX
+ = I. However, if X has full column

rank then X
+

X = I, and if X has full row rank then XX
+ = I. It is always true that X

+
XX
+ = X

+ and XX
+

X =

X; this is part of the definition of the pseu-
doinverse, along with the requirements that
(XX

+)T = XX
+ and (X+X)T = X

+
X.

7. If a matrix has only real entries, then so does its pseudoinverse.

8. If a matrix X is full rank, then X
+ = (XT

X)−1
X

T.

To understand the final property, consider the linear system

y = X#

Let’s multiply both sizes by the matrix X
T.

X
T
y = X

T
X#

We know that thematrix X is not square; however, thematrix X
T
X is always square. If matrix X has < rows and = columns, the

matrix X
T

X has = rows and = columns.Since X
T
X is square, it is invertible provided it is full rank, which is guaranteed if

X has full column rank (see §7.1.1). Assuming (XT
X)−1 exists, let’s multiply both

sides of our equation by it.

(XT
X)−1

X
T
y = (XT

X)−1
X

T
X#

Look carefully at the righthand side. We have the matrix X
T
X multiplied by its

inverse, (XT
X)−1. This is equal to the identity matrix, so

(XT
X)−1

X
T
y = #

We have solved the system y = X# for the vector #, so the quantity (XT
X)−1

X
T on

the lefthand side must be the pseudoinverse of the matrix X.
Let’s use pseudoinversion to solve our example model:

©­­­­«
−0.05
0.40
0.66
0.65
1.12

ª®®®®¬
=

©­­­­«
1 0.07
1 0.16
1 0.48
1 0.68
1 0.83

ª®®®®¬
(
�0
�1

)
+

©­­­­«
&1
&2
&3
&4
&5

ª®®®®¬
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Using Matlab’s pinv function we can calculate the pseudoinverse of the model
matrix

X
+ =

(
0.59 0.50 0.16 −0.046 −0.20
−0.88 −0.67 0.084 0.55 0.91

)
and find the least squares estimates for the parameters

# = X
+

y =

(
0.59 0.50 0.16 −0.046 −0.20
−0.88 −0.67 0.084 0.55 0.91

) ©­­­­«
−0.05
0.40
0.66
0.65
1.12

ª®®®®¬
=

(
0.020

1.21

)

Again, we see that �0 = 0.020 and �1 = 1.21.

8.5.1 Calculating the Pseudoinverse

Our new formula for the pseudoinverse (X+ = (XT
X)−1

X
T) gives us intuition about

solving nonsquare linear systems — we are actually solving a related system in-
volving the specialmatrixX

T
X. This formof the pseudoinverse requires calculating

amatrix inverse, whichwe have all sworn never to do except in dire situations. The
function pinv in Matlab uses a matrix decomposition method to find pseudoin-
verses, whichwewill discuss in section 19.3.2. Matrix decompositionmethods also
work on rank deficient matrices since they do not require a true matrix inversion.

8.6 Dimensions of the Model Matrix

The pseudoinverse of X is part of the least squares solution for the linear model
y = X# + &. Each row in X is an observation and each column corresponds to
an unknown parameter. If X is square, we have one observation per parameter.
We know that the pseudoinverse of a square, invertible matrix is identical to the
ordinary inverse. We also know that linear systemswith square coefficientmatrices
have a unique solution. There is no room to find a solution that minimizes the loss
when there is only a single unique solution. We can fit all of the parameters, but as
we will see later, we have no information about how well we did minimizing the
loss.

If we havemore observations than parameters (X hasmore rows than columns),
the extra information in the observations can be used to estimate how well our
solution minimizes the quadratic loss. The extra degrees of freedom can quantify
our confidence in the model.
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Finally, our system is underdetermined if we have fewer observations than pa-
rameters. The search space for parameters is simply too large, and we often cannot
find a meaningful solution. Fitting these models requires special tools that we will
discuss in Chapter 14.



Chapter 9

Building Regression Models

In Chapter 8 we outlined a framework for fitting linear models to data. Linear
models are enormously flexible and can be applied to many problems in science
and engineering. In this chapter we discuss how to formulate, solve, and interpret
several types of linear models. The accompanying Matlab workbook describes
how to build and solve linearmodels usingmatrices and a formula-based interface.

A few notes on notation before we begin. Linearmodels can be expressed using
either standard algebra or vector algebra. Consider a model with two predictor
variables (inputs). We can write this model as

H8 = �1G1,8 + �2G2,8 + &8

or using vector notation
y = �1x1 + �2x2 + &.

We prefer the latter form since it is simpler and it emphasizes that each predictor
variable is a vector. These vectors are collected into the model matrix, which is
pseudoinverted to solve the linear model. Notice how we’ve dropped the “pred”
and “true” labels from our equations. In this chapter it should be clear that the
model is always fit using the true, measured values.

9.1 The Intercept

The model’s intercept is the only parameter not associated with an input. For the
linear model

y = �0 + �1x1 + �2x2 + &

75
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the coefficient �8 is associated with input x8 , so by convention we call the intercept
�0 since it has no associated input. The above model is a slight abuse of notation.
The lefthand side (y) is a vector, and all the non-intercept terms on the righthand
side (�1x1, �2x2, and &) are also vectors. The intercept �0 is a scalar, andwe have not
defined an addition operator between scalars and vectors. When writing a linear
model, we assume that the intercept multiplies an implicit vector of ones, so the
real model is

y = �01 + �1x1 + �2x2 + &.

Although we usually omit the vector 1, it is a helpful reminder that models with Be careful to distinguish between 1, a vector of
ones, and I, the identity matrix.an intercept have a column of ones in their model matrix. Rewriting the above

equation in vector notation gives

y =
(
1 x1 x2

) ©­«
�0
�1
�2

ª®¬ + &.

The model matrix for this model is X =
(
1 x1 x2

)
. If we wanted to fit a model

without an intercept, we would write

y =
(
x1 x2

) (
�1
�2

)
+ &

and the model matrix would be X =
(
x1 x2

)
.

When all of the input variables x8 are zero, themodel’s output is the value of the
intercept (Hpred = �0). Thus, whether or not to include an intercept in your model
depends on the output you would expect when all inputs are zero. For example,
imagine you are building a model that predicts the height of a plant based on the
number of hours of sunlight it receives. A plant that never sees the sun should
not grow, so it would be reasonable to exclude an intercept from the model. If
instead you build a model that relates plant height to amount of fertilizer added,
you would include an intercept since a plant that receives no fertilizer could still
grow with only the nutrients in the soil. Most times your models will include an
intercept, and software packages like Matlab add them by default. However, you
should consider if the intercept is needed and if it is reasonable for the output of
the model to be nonzero when all of the input variables are zero.

9.2 Analyzing Models

There are two reasons to build models. The first is prediction — estimating a new
output for inputs that were not included in the training set. For example, a set of
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clinical measures (blood pressure, resting pulse, white cell count) could be used to
train amodel that predicts a person’s risk of heart attack. After training is finished,
we can use the model for prediction by using a new person’s clinical measures as
inputs.

The second reason to build a model is inference. Inference focuses on how a
model makes its predictions. For a heart attack model, we can ask which of the
clinical measures are important for determining risk, or how much changing an
input would raise or lower the model’s prediction. It may surprise you how often
we build models that are only used for inference and not for prediction. You may
have seen studies that link coffee consumption to blood pressure. Such studies are
analyzed by building amodel that predicts blood pressure based on the number of
cups of coffee consumed. This model has low predictive value; few people would
need to predict what their blood pressure will be if they drank a certain amount
of coffee. But the model has inferential value. Examining the parameters of the
model can tell us how large of an effect coffee has on blood pressure and if this
effect is statistically significant.

9.2.1 Prediction Intervals

The outputs of a model are only predictions. They are never exactly correct, and
we would like some estimate of their accuracy. We can use our training data to
assess our model’s predictive power. First, we fit the model by finding parameter
estimates that minimize the loss function. Model fitting uses the observed inputs
and outputs (xtrue and y

true). Next, we feed the training inputs x
true back into the

model to calculate the predicted output y
pred. If the model fit the training data

exactly, the predicted outputs y
pred would perfectly match the true outputs y

true.
In almost all cases, the predicted and true outputs will disagree, and we can use
the discrepancy to estimate the model’s accuracy.

A common measure of accuracy is the root-mean-squared-error, or RMSE. If the
training data included = observations, then the model’s RMSE is

RMSE =

√√
1
=

=∑
8=1

(
H

pred
8
− Htrue

8

)2

The RMSE formula is best understood from the inside out. The squared error of
a single prediction is (Hpred

8
− Htrue

8
)2. Summing these errors and dividing by =

gives the mean squared error. Unfortunately, the mean squared error is difficult to We prefer the term “loss” rather than “error”
when training models, but error makes sense
when measuring a model’s accuracy.

interpret, in part because the units of this error are the output’s units squared. It is
easiest if we transform the mean squared error back into output’s units by taking
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the square root. Hence, the RMSE is the square root of the mean of the squared
errors.

The RMSE is an estimate of the standard deviation of the prediction errors.
When reporting a prediction when can include the RMSE to give the reader a
feel for the model’s accuracy. If a model predicts a patient’s resting pulse rate as
68 bpm and the model’s RMSE is 12 bpm, then we should report the prediction as
68 ± 12 bpm. It is often assumed that the model’s prediction errors are normally
distributed, so the RMSE can be used to estimate a prediction interval. The 95%
prediction interval spans twice the RMSE on either side of the prediction. For our
pulse example, the 95%prediction interval is [68−2×12, 68+2×12] = [44, 92] bpm.
Remember that if we transformed the output of amodel (see §9.4), we need to undo
the transformation for both the model prediction and the RMSE to get back to the
original units.

9.2.2 Effect Sizes and Significance

Let’s switch gears from prediction to inference. The goal of inference is to under-
stand how the inputs relate to the output. You can think of model building as
a multivariable hypothesis test. After collecting data, we construct a predictive
model based on a set of inputs. Wemight discover that some of the inputs may not
be useful for predicting the output, so model fitting in essence tests the strength of
the relationship between each input and the output.

Model inference involves asking two questions about each of themodels inputs.

1. How large of an effect does this input have on the output?

2. How confident are we in our estimate of this effect?

The first question concerns the effect size of the input. The effect size is another
name for the coefficient that we estimate for the input. Consider the two input
model

y = 1.2 − 3.6x1 + 0.8x2 + &.

The effect size for input x1 is −3.6, and the effect size of input x2 is 0.8. The effect
size quantifies the sensitivity of the output with respect to the input. Increasing x1
by one will decrease the output y by 3.6 (since the effect size is negative). Increasing Increasing a variable by one is commonly

called a “unit increase”. This terminology is
unrelated to the actual units of the variable,
e.g. kilograms, seconds, etc.

x2 by one will increase the output by 0.8.
Effect sizes have units. If the previous model predicted pulse rate in bpm and

the input x1 was a person’s age in years, the effect size would be −3.6 bpm/year. It
is important to include any units when reporting effect sizes.

The effect size of an input answers the first inferential question (“how large of an
effect does an input have on the output?”). Models estimate effects using inherently
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noisydata, so our estimates are never exact. Most statisticalmodelingpackageswill
report a standard error and a ?-value for each effect size. The standard error can
be used to construct a confidence interval for the effect size. For example, the 95%
confidence interval spans two standard errors on each size of the effect size. Often
wewant to know if an effect size is significantly different from zero. If an effect size
is indistinguishable from zero (i.e. if the confidence interval includes zero), then
we cannot reject the idea that the observed effect size is simply an artifact of the
uncertainty in our data. Said another way, if an effect size is indistinguishable from
zero, we should not be surprised if we refit the data with a new set of observations
(of the same size) and find that the effect has “disappeared”.

The C-test is a common method for testing if an effect size can be distinguished
from zero. The ?-value reported for an effect size is the ?-value from a C-test.
A threshold of ? < 0.05 is frequently used to separate “significant” from “not
significant” effects. If the ?-value exceeds our threshold, we are not confident that
the effect size is nonzero.

Be careful to distinguish between an effect size and its significance. The ?-
value is only related to the precision of our estimate; it has no bearing on the
magnitude of the effect. A very small ?-value indicates that an effect size is
statistically distinguishable from zero, but the practical significance of the effect
could be small. As an interesting example, consider a study released by the online
dating site eHarmony (Cacioppo, et al., Proc Nat Acad Sci, 2013). The study reports
a statistically significant increase in marital satisfaction among couple who met
online vs. by other venues. While the results were statistically significant, the
actual increase in marital satisfaction was only 2.9%. Even though the means of
the two groups differed by less than 3%, the enormous sample size (19,131 couples)
made the result statistically — but not practically — significant.

9.2.3 Degrees of Freedom

A model’s parameters must be estimated from the observed data. We know from
Chapter 7 that a linear system requires the information from one observation
to estimate each unknown. Let’s assume we use < observations to fit a model
with = unknown parameters. If < = =, we have just enough information to
estimate each parameter; however, we have no information left over to assess the
accuracy of our predictions or the effect sizes. If we have more observations than
unknown parameters (< > =), then we can use the remaining observations to
build confidence intervals. We call the number of “extra” observations the degrees
of freedom. A model with = parameters fit to < observations has < − = degrees
of freedom. Note that the intercept is an unknown parameter, so it should be
included the parameter count. We need at least one degree of freedom to estimate
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prediction intervals or the significance of effect sizes. As the degrees of freedom
increase, the RMSE and the standard errors of the effect sizes decrease.

9.3 Curvilinear Models

So far we’ve focused on models that are linear combinations of a set of inputs. It is
important to remember that the parameters, not the inputs, are the unknowns in
our models. We can apply any transformation we want to the inputs and retain a
linear model. Consider the cubic polynomial model We define vector exponentiation as an elemen-

twise operation, so

x
2 =

©­­­­«
G2

1
G2

2
.
.
.

G2
=

ª®®®®¬
.

y = �0 + �1x + �2x
2 + �3x

3 + &.

This model is still linear with respect to its parameters, as we see when we rewrite
it in matrix form.

y =
(
1 x x

2
x

3) ©­­­«
�0
�1
�2
�3

ª®®®¬ + &

Thismodel has only a single input— the vector x. We’ve created additional features
for the model by squaring and cubing the entries in x. Each of the transformed
features appears as a separate column in the model matrix.

We can fit any polynomial using linear regression by transforming the input.
These transformations are usually hidden “under the hood” in spreadsheet pro-
grams that let you perform polynomial regression. Spreadsheets allow their users
to specify the degree of the polynomial. When a user clicks to increase the degree,
the spreadsheet adds a new column to the model matrix and refits the model.

Any transformation, not just exponentiation, can be applied to the inputs of
a model. Logarithms, square roots, and mean-centering (subtracting the mean
of x from every entry) are common transformations. The outputs y can also
be transformed. A model that includes transformed inputs or outputs is said
to be curvilinear since it remains linear with respect to the parameters but the
input/output relationship is no longer “straight”.

9.4 Linearizing Models

We are able to fit curvilinear models using linear algebra because the models
remained linear with respect to the parameters. Some models do not appear to
be linear but can be made linear by transformation. For example, bacteria grow
exponentially, so their growth can be describe by the model

#(C) = #04
�C
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where #(C) is the number of bacteria at time C, #0 is the initial number of bacteria,
and � is the growth rate. The parameters in this model are #0 and �, and the
exponential growth model is not linear with respect to �. Let’s transform the
model by taking the natural logarithm of both sides.

log(#(C)) = log(#04
�C)

= log(#0) + �C

Now let’s make a few substitutions. Our output variable is H = log(#(C)). The
values#(C) are all known, sowe simply transform themwith the natural logarithm
before fitting the model. Wewill also set �0 = log(#0) and �1 = �, making our final
linear model

y = �0 + �1t + &.

We can use linear regression to estimate the parameters �0 and �1. These parame-
ters can be transformed back into estimates of #0 and �:

�0 = log(#0) ⇒ #0 = 4
�0

� = �1

The Michaelis-Menten equation is another nonlinear function that can be lin-
earized. Recall that the velocity E of a reaction is a function of substrate concentra-
tion [(] and two parameters, +max and  < .

E =
+max[(]
 < + [(]

This equation is nonlinear with respect to the parameters +max and  < , but it can
be linearized by inverting both sides. This linearization of the Michaelis-Menten

equations is called Lineweaver-Burk or double
reciprocal method.1

E
=
 < + [(]
+max[(]

=
 <

+max[(]
+ [(]
+max[(]

=
 <

+max

1
[(] +

1
+max

Using 1/[(] as the input x and 1/E as the output y, the two parameters of the linear
model are �0 = 1/+max and �1 =  </+max.

Not every nonlinear model can be transformed into a linear one. Logarith-
mic transformations sometimes work for multiplicative models and models with
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parameters as exponents. Linearizing models allows us to find parameter values
using linear regression, but there is a downside. The linearization can skew the
distribution of our dataset and amplify measurement errors. For the linearized
Michaelis-Menten equation, the output variable is 1/E, the inverse of the reaction
velocity. When the velocity E is very small, the transformed variable 1/E becomes
very large. Any uncertainty in our velocity measurements will be amplified when
E is small. An alternative approach is to avoid linearization and fit parameters
directly to the nonlinear model. We will discuss nonlinear fitting methods in
Part II.

9.5 Interactions

So far the inputs to our models are additive. Consider again the two input linear
model

y = 1.2 − 3.6x1 + 0.8x2 + &.

For every unit increase in x1, the output y decreases by 3.6, regardless of the value
of the other input x2. In modeling terms, we say there is no interaction between
inputs x1 and x2. If we believe that the inputs do interact, that is, if the effect of
changing one input depends on the value of the other input, then we can add a
term to describe this interaction. The termwe add is the product of the two inputs,
and this term receives its own parameter. For example, a standard two-input linear
model (without interaction) is

y = �0 + �1x1 + �2x2 + &.

A similar model with an interaction term between x1 and x2 is

y = �0 + �1x1 + �2x2 + �12x1:x2 + &.

By conventionwe call the interactionparameter �12 since itmeasures the interaction
effect between inputs x1 and x2. (It is read “1-2”, not as the number “12”.) We’ve
used the colon to represent elementwise multiplication between the vectors x1 and
x2, as this is the syntax used to specify linear models in many software packages. The elementwise product of two vectors a and

b is

a:b =
©­­­­«
0111
0212
.
.
.

0=1=

ª®®®®¬
.

Adding interaction terms does not violate the linearity of the model. Remember
that the inputs x8 are known, so multiplying them together yields yet another
known quantity.

The interaction effect �12 quantifies the effects of the inputs that cannot be
explained by either input alone. Notice that our interaction model retains the
independent terms �1x1 and �2x2. The interaction term �12x1:x2 only describes the
“above and beyond” effects. If the inputs x1 and x2 are strictly additive, then the
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estimate of the interaction effect �12 will be zero. In biomedical terms, you can
think of the interaction as the “synergy” between the inputs.

Youmight bewonderingwhy the interaction between twovariables ismeasured
by their product, rather than some other function. There are two explanations, and
you are free to choose the one you like best.

1. The interaction depends on both inputs, so it should not have an effect when
either input is missing (zero). The term �12x1:x2 is the simplest expression
that is zero when either x1 or x2 is zero.

2. Alternatively, we could assume that the effect size of input x1 depends on the
value of x2. We could write a model

H = (�1 + �12x2):x1 + �2x2

where the effect size of G1 is not a single parameter but instead an expression
that depends on x2. The coefficient �12 adjusts the coefficient of x1 for each
unit change in x2. If we distribute x1 into its coefficient, we see that thismodel
is identical to our standard interaction model H = �1x1 + �2x2 + �12x1:x2.

Linearmodels can have higher-order interactions, like the followingmodelwith
all possible two- and three-way interactions.

y = �0 + �1x1 + �2x2 + �3x3

+ �12x1:x2 + �13x1:x3 + �23x2:x3

+ �123x1:x2:x3 + &

A model with = inputs has 2= possible parameters (including the intercept and
main effects) if all interactions are considered. Fortunately, there is rarely a need
for higher-order interactions. A three-way interaction term measures the effects
of the three inputs that cannot be explained by the main effects or the two-way
interactions among the three inputs. It is rare to see three inputs interact in a
way that cannot be explained by pairwise interactions. In the statistical literature,
the rarity of significant higher-order interactions is called the hierarchical ordering
principle.



Part II

Nonlinear Systems
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Part I of this book described methods for solving linear systems. These methods
are definite — the solvability theorems tell us if a system is solvable and exactly
how many solutions exist. The tools for linear systems are also constructive. If
solutions exist, we have deterministic methods to find them.

In Part II we turn our attention to nonlinear systems. The nonlinearities remove
the luxuries we encountered with linear systems. We will not know if a nonlinear
system is solvable or how many solutions exist. Even when a solution exists, we
will be forced to rely on iterative or stochastic methods to search for it.

There are nonlinear systems that are exempt from the above problems. The
linear least-squares problems of Chapter 8 are nonlinear (quadratic), but we used
thepseudoinverse tofindaunique solution. InChapter 11wewill see that the linear
least-squares problem belongs to a special class of nonlinear problems because it is
convex. Convex problems can be solvedwith relative ease, and learning to identify
and exploit convexity is a powerful tool for nonlinear systems.

We will focus on two nonlinear problems. The first is the root finding problem:
For a system of nonlinear equations g(x), what are the values of the vector x such
that g(x) = 0? The second problem is the optimization problem: Find a vector x that
minimizes the scalar function 5 (x). These twoproblems are related, and algorithms
that solve one problem can be used to solve the other. For example, consider a
continuously differentiable function 5 (x). If 5 has a minimum, it occurs when the
gradient of 5 is equal to the zero vector. Minimizing the function 5 is equivalent
to find a vector x such that g(x) = 0 when g is the gradient of 5 . Similarly, imagine
we want to find a zero of the nonlinear function g(x). If we define 5 (x) = ‖g(x)‖,
then the zero of the function g corresponds to the point at the minimum of the
function 5 .

Solving nonlinear systems is more of an “art” than solving linear systems. We
will learn several strategies that work well for some problems but not for others.
There is no single best method for solving nonlinear problems, and we will focus
on the strengths and weaknesses of each technique. In practice, you will learn to
try methods that are inspired by the features of each problem.



Chapter 10

Root Finding

We’ve seen multiple methods for solving linear systems of equations. In this
chapter we develop a method to solve nonlinear systems of equations using linear
algebra. We beginwithNewton’smethod for finding the roots of a single nonlinear
equation. Then we generalize the method to systems of equations using a matrix
formalism.

10.1 Nonlinear Functions

A nonlinear function is, simply put, a function that fails the tests for linearity. You
might have been surprised that the affine function 6(G) = 0G+1was nonlinear. The
functions 6(G) = cos G, 6(G) = G2, and 6(G) = log G are all nonlinear with respect to
the independent variable G.

By convention we write nonlinear functions in the form

6(G) = 0

This convention is not a limitation, as any nonlinear function with a nonzero
right hand side can be rewritten by moving the right hand terms to the left side.
Writing nonlinear functions in this way lets us solve the function by identifying
values where the function equals zero, i.e. by finding the roots of the function. For
example, the equation

(G − 1)3 = 8

has a unique solution when G = 3. We can rewrite this equation as the function

6(G) = (G − 1)3 − 8 = 0

86
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Notice that the function 6(G) has a root when G = 3, which is also the solution to
the equation (G − 1)3 = 8.

Linear systems have exactly zero, one, or infinitelymany solutions. By contrast,
nonlinear systems can have any number of solutions. The function 6(G) = G2−4 has
two roots: G = 2 and G = −2. Unlike linear systems, there is no grand solvability
theorem for nonlinear systems. Except in special cases (for example, polynomials),
we cannot tell a priori how many unique solutions exist for a nonlinear equation.
Even when we know a solution exists, we do not have a general procedure like
Gaussian elimination for finding solutions to nonlinear equations. Instead, we
often rely on numerical techniques to find some of the roots of nonlinear functions.

10.2 Newton’s Method

Given a function 6(G), how do we find its roots? One powerful method builds on
an observation regarding the tangent lines of 6(G) near its roots. Imagine we are
at a point G0 that is near a root. The tangent line of 6(G) at the point G0 will itself
have a root that is closer to the root of 6(G). Let’s call this new point G1.

G1 G0

root

Figure 10.1: If a point G0 is close to the root
of a function (black), the tangent line (red) in-
tersects the horizontal axis at a point G1 that is
closer to the root.

If we draw another tangent line for 6 at G1, we see that the root of the tangent
line is again closer to the root of 6. We can repeat this procedure again and again,
each time moving closer to the root of 6. Rather than solve the nonlinear function
6, we only need to solve a series of affine equations describing the tangent line at
each iteration.

Let’s formalize the above procedure. The starting point G0, the values of 6 and
its derivative 6′, and the root G1 of the tangent line are related by

6′(G0) =
6(G0)
G0 − G1

You can interpret this formula as “the slope of the tangent line at G0 (6′(G0)) is equal
to the height of the function at G0 (6(G0)) divided by the distance between G0 and
G1.” Rearranging, we can find the root of the tangent line based on values at our In other words, the slope of the tangent line

6′(G0) is its rise 6(G0) divided by its run (G0 −
G1).

current point.

G1 = G0 −
6(G0)
6′(G0)

Now we know the location of G1, a point closer to the root of the original function
6. We can apply the same procedure starting at G1 to find a closer point G2, and so
on. Newton published a very limited version of

the method that bears his name. British math-
ematician Thomas Simpson was the first to ap-
ply the technique to general systems of non-
linear equations. He also noted connections
between nonlinear systems and optimization.
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G2 = G1 −
6(G1)
6′(G1)

G3 = G2 −
6(G2)
6′(G2)

...

G=+1 = G= −
6(G=)
6′(G=)

10.3 Convergence of Newton’s Method

root

5 5.5 6 6.5 7

−5

0

5

10

G

6
(G
)

Figure 10.2: The function 6(G) = (G − 4)3 − 2G
has a root between G = 6 and G = 6.5.

Let’s find a root for the equation

6(G) = (G − 4)3 − 2G

By plotting the function, we see there is a root somewhere between G = 6 and
G = 6.5. We can use Newton’s Method to find a more precise estimate of the root.
We first calculate the derivative

6′(G) = 3(G − 4)2 − 2

Let’s choose our initial guess to be G0 = 6.0. We’re ready to calculate G1.

G1 = G0 −
6(G0)
6′(G0)

= G0 −
(G0 − 4)3 − 2G0

3(G0 − 4)2 − 2

= 6.0 − (6.0 − 4)3 − 2(6.0)
3(6.0 − 4)2 − 2

= 6.4

We can check if we’ve found a root by evaluating 6(G1). If G1 is a root, 6(G1) should
equal zero.

6(G1) = 6(6.4) = 1.024 ≠ 0
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We haven’t arrived at a root yet. Let’s try another iteration of Newton’s method to
find a second guess (G2) using G1.

G2 = G1 −
6(G1)
6′(G1)

= G1 −
(G1 − 4)3 − 2G1

3(G1 − 4)2 − 2

= 6.4 − (6.4 − 4)3 − 2(6.4)
3(6.4 − 4)2 − 2

= 6.332984293

The new value G2 is closer to being a root: 6(6.332984293) = 0.03203498. We can When studying numericalmethodswewill ex-
tendour answers far beyond the number of sig-
nificant figures. As engineers we later trim or
truncate our answers to an appropriate number
of significant figures based on the uncertainty
in the system.

always move closer using more iterations as shown in the following table.

8 G8 6(G8)
0 6 -4
1 6.4 1.024
2 6.332984293 0.032034981
3 6.330748532 0.000034974
4 6.330746086 4.18421×10−11

Newton’s method converges quadratically once the G8 are close to the actual
root. “Close” is not well defined and varies with each function. If an initial guess The quadratic convergence stems from our use

of a linear approximation for the function, leav-
ing a residual bounded by the quadratic terms.

is far from the true root, Newton’s method can either 1.) converge slowly until it
becomes close enough for quadratic converge to kick in, or 2.) not converge at all.
If Newton’s method is converging slowly or diverges, you should try a different
initial guess.

10.4 Multivariable Functions

Newton’s method works well for nonlinear functions of a single variable. We
use a variant of Newton’s method to solve multivariable functions. Multivariable Multivariable functions are also called multi-

variate or vector-valued functions.functions accept a vector of inputs and produce a vector of outputs. We write
the names of multivariable functions using bold, non-italicized font — g(x) — to
remind us that a multivariable functions return a vector of outputs.

We’re already familiar with linear multivariable functions like g(x) = Ax. This
function accepts a vector of inputs (x) and returns another vector of outputs (Ax).
We can also define nonlinear multivariable functions. An example with three
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inputs and three outputs is

g(x) = ©­«
G1 − G3
G2

3 + 2G2
cos G1

ª®¬
If x =

©­«
0
−1

2

ª®¬, then
g(x) = ©­«

0 − 2
22 + 2(−1)

cos 0

ª®¬ = ©­«
−2

2
1

ª®¬
It’s sometimes convenient to talk individually about the entries in the nonlinear
function. We can write a multivariable function using the following notation We use lowercase and italicized font (68 ) when

referencing individual entries in a multivari-
able function since each entry produces only a
single output.

g(x) =
©­­­­«
61(G1 , G2 , . . . , G=)
62(G1 , G2 , . . . , G=)

...
6=(G1 , G2 , . . . , G=)

ª®®®®¬
For the example above, 61 = G1 − G3; 62 = G

2
3 + 2G2; and 63 = cos G1.

10.5 The Jacobian Matrix

For functions of a single variable, Netwon’smethod uses the derivative to construct
a linear approximation. The multivariable analog of the derivative is matrix of
partial derivatives called the Jacobian, which we write as J(x). The Jacobian is named after German mathe-

matician Carl Gustav Jacob Jacobi. I assume
it is based on his last name, or possibly his
second-to-last name.

J(x) =

©­­­­­­­«

%61
%G1

%61
%G2

· · · %61
%G=

%62
%G1

%62
%G2

· · · %62
%G=

...
...

. . .
...

%6=
%G1

%6=
%G2

· · · %6=
%G=

ª®®®®®®®¬
The (8,9)th entry in the Jacobian is the partial derivative of the 8th function with
respect to the 9th variable. If a multivariable function has = inputs and = outputs,
its Jacobian is a square = × = matrix.
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Let’s compute the Jacobian for the function g(x) = ©­«
G1 − G3
G2

3 + 2G2
cos G1

ª®¬.

J(x) =

©­­­­­­«

%
%G1
(G1 − G3) %

%G2
(G1 − G3) %

%G3
(G1 − G3)

%
%G1

(
G2

3 + 2G2
)

%
%G2

(
G2

3 + 2G2
)

%
%G3

(
G2

3 + 2G2
)

%
%G1
(cos G1) %

%G2
(cos G1) %

%G3
(cos G1)

ª®®®®®®¬
=

©­«
1 0 −1
0 2 2G3

− sin G1 0 0

ª®¬
10.6 Multivariable Newton’s Method

For functions of a single variable, Newton’s method iterates with the formula

G8+1 = G8 −
6(G8)
6′(G8)

Using a multivariable linear approximation, we can define the multivariable ana-
logue of Newton’s method.

x8+1 = x8 − J
−1(x8)g(x8)

As an example, let’s find a root of the function

g =

(
G1G2 − 2

−G1 + 3G2 + 1

)
First we calculate the Jacobian matrix.

J(x) =
(
G2 G1
−1 3

)
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Using an initial guess of x0 =

(
−1
−1

)
we begin iterating.

x1 = x0 − J
−1(x0)g(x0)

=

(
−1
−1

)
−

(
−1 −1
−1 3

)−1 (
(−1)(−1) − 2

−(−1) + 3(−1) + 1

)
=

(
−2
−1

)
Now we use x1 to find the next guess x2.

x2 = x1 − J
−1(x1)g(x1)

=

(
−2
−1

)
−

(
−1 −2
−1 3

)−1 (
(−2)(−1) − 2

−(−2) + 3(−1) + 1

)
=

(
−2
−1

)
Our guess x2 is exactly equal to the previous guess x1. Since our guess didn’t
change we are probably at a root. We can check by evaluating g(x2).

g(x2) =
(

(−2)(−1) − 2
−(−2) + 3(−1) + 1

)
=

(
0
0

)
Indeed, the vector

(
−2
−1

)
is a solution to our equation.

Nonlinear systems often have many solutions. Newton’s method converges to

the solution nearest the initial guess. If we chose the point
(
1
1

)
as our initial guess, “Nearest” in the topological sense, i.e. the so-

lution that is down the gradient of the function
at the initial guess.

Newton’s method on the same function would converge to the root x =

(
3

2/3

)
after

four iterations.

10.7 * Gauss-Newton Method

The multivariate Newton’s method assumes that the inputs and outputs of the
function g have the same dimension. If the dimensions disagree, the Jacobian
matrix will not be square and its inverse will not be defined. In some cases,
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we can apply a related method — the Gauss-Newton Method — that uses the
pseudoinverse of the nonsquare Jacobian.

x8+1 = x8 − J
+(x8)g(x8)

For convergence, we require that the function g accepts an =-dimensional input
vector and outputs an <-dimensional vector, where < > =.

10.8 Root Finding with Finite Differences

In all of our exampleswe have been able to calculate the derivative of the function 6
(or the Jacobian of multivariate function g) using calculus. This is not always
possible. Sometimes the function 6 is unknown to us or is very complicated.
Sometimes 6 is a simulation that includes random numbers, like a traffic simulator
thatmodels randomarrivals anddepartures of cars. In this casewe cannot calculate
the derivative without knowing what random numbers will appear when the
function is later evaluated.

An alternative is to use finite differences to approximate the derivative. Recall
from Chapter 5 that the derivative 6′(G) can be approximated by

6′(G) ≈
6(G + ΔG) − 6(G)

ΔG

for some small value ΔG. Let’s return to an example from earlier in this chapter:

6(G) = (G − 4)3 − 2G

We can approximate the derivative at G = 1 with ΔG = 0.1.

6′(1) ≈
6(1.1) − 6(1)

0.05

=
(1.1 − 4)3 − 2(1.1) − (1 − 4)3 + 2(1)

0.1
= 24.0

The actual value of the derivative at G = 1 is

6′(1) = 3(1 − 4)2 − 2
= 25

The accuracy of our approximation depends on both the size of the perturba-
tion ΔG and on the nonlinearity of the function. Using ΔG = 0.01 puts us closer to
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the correct value of the derivative (6′(G) ≈ 25), while a perturbation of ΔG = 0.2
makes the approximation worse (6′(G) ≈ 23). This is a big problem when the
function 6 is stochastic, meaning it depends on random values. Stochastic func-
tions are “noisy” and their outputs always include error. Making the perturbation
smaller can amplify the effects of this error, but large perturbations will lead to a
poor approximation of the derivative. One solution is to construct our approxi-
mation of the derivative using multiple finite difference measurements. Multiple
measurements can average out the error, but they require more computation.

In addition to numerical issues, a finite difference approximation can be expen-
sive to evaluate for multivariate functions. To approximate a partial derivative we
perturb the vector x along a single dimension. We canwrite the perturbation using
the Cartesian unit vectors

%6

%x8
≈
6(x + Δê8) − 6(x)

Δ

where the scalar Δ is the perturbation size. Every entry in the Jacobian must be
approximated using a function evaluation with a perturbed input. The Jacobian
of an =-dimensional function has =2 entries, so a finite difference approximation
requires =2 function evaluations.

Amore recent solution is a technique called automatic differentiation, also known
as “autodiff” or “autograd” (which is short for automatic gradient). Automatic
differentiation uses specialized software to compute derivatives by tracking the
mathematical operations in a function and applying the chain rule. Automatic
differentiation is available in many state-of-the-art machine learning packages.
It can calculate the true derivative of a function when applied correctly. Many
implementations include an option to check the automatic differentiation results
using finite differences.

10.9 Practical Considerations

Solving nonlinear equations is an art. Here are some tips.

• Nonlinear equations rarely have a single solution. Solvers try many (hun-
dreds or thousands) of initial guesses to find several solutions. There is no
general method for determining the total number of roots for a nonlinear
system.

• Software packages likeMatlab’s fsolve function canfind rootswith a variety
of algorithms. Many techniques find points near roots and use Newton’s
method to finish the search.
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• Software packages often allow users to provide both the function and the
Jacobian. Knowing the Jacobian explicitly almost always improves speed
and numerical stability. If the user doesn’t provide a Jacobian, the software
will estimate the Jacobian at every iteration using finite differences.

• Single variableNewton’smethod requires the functionbe continuouslydiffer-
entiable. Multivariable functions require the Jacobian be invertible. So-called
“gradient free” algorithms are available for functions with poorly behaving,
computationally expensive, or discontinuous derivatives.

• The multivariable Newton’s method involves inverting the Jacobian, which
is computationally expensive. Instead, numerical solvers rearrange the iter-
ation equation:

x8+1 = x8 − J
−1(x8)g(x8)

J(x8)x8+1 = J(x8)x8 − J(x8)J−1(x8)g(x8)
J(x8) (x8+1 − x8) = −g(x8)

In this form, the solver can use Gaussian elimination on the augmented
matrix [J(x8) − g(x8)] to solve for x8+1 − x8 ; adding x8 gives the new estimate
for x8+1.



Chapter 11

Optimization and Convexity

We formulated the least squares method and linear regression as optimization
problems. Our goal was to minimize the sum of the squared errors by choosing
parameters for the linear model. Optimization problems have enormous utility in
data science, and most model fitting techniques are cast as optimizations. In this
chapter, we will develop a general framework for describing and solving several
classes of optimization problems. We begin by reviewing the fundamentals of
optimization. Next, we discuss convexity, a property that greatly simplifies the
search for optimal solutions. Finally we derive vector expressions for common
geometric constructs and show how linear systems give rise to convex problems.

11.1 Optimization G

5 (G)

− 5 (G)

maximum

minimum

Figure 11.1: The maximum of a function 5 (G)
can be found by minimizing − 5 (G).

Optimization is the process of minimizing or maximizing a function by selecting
values for a set of variables or parameters (called decision variables). If we are
free to choose any values for the decision variables, the optimization problem
is unconstrained. If our solutions must obey a set of constraints, the problem is
a constrained optimization. In constrained optimization, any set of values for the
decision variables that satisfies the constraints is called a feasible solution. The goal
of constrained optimization is to select the “best" feasible solution.

Optimization problems are formulated as either minimizations or maximiza-
tions. We don’t need to discuss minimization and maximization separately, since
minimizing 5 (G) is equivalent tomaximizing− 5 (G). Any algorithm forminimizing
can be used for maximizing by multiplying the objective by −1, and vice versa. For
the rest of this chapter, we’ll talk about minimizing functions. Keep in mind that
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everything we discuss can be applied to maximization problems by switching the
sign of the objective.

local
max

local
min

global
max

global
min

local argmax

local argmin

global argmax

global argmin

Figure 11.2: Minima andmaxima of a function
can be local or global.

During optimization we search for minima. A minimum can either be locally
or globally minimal. A global minimum is has the smallest objective value of any
feasible solution. A local minimum has the smallest objective value for any of the
feasible solutions in the surrounding area. The input to a function that yields the
minimum is called the argmin, since it is the argument to the function that gives the
minimum. Similarly, the argmax of a function is the input that gives the function’s
maximum. Consider the function 5 (G) = 3 + (G − 2)2. This function has a single
minimum, f(2) = 3. The minimum is 3, while the argmin is G = 2, the value of
the decision variable at which the minimum occurs. For optimization problems,
the minimum (or maximum) is called the optimal objective value. The argmin (or
argmax) is called the optimal solution.

1 2 3 40

2

4

6

G

5 (G)

Figure 11.3: The function 5 (G) = 3 + (G − 2)2
has a minimum of 5 = 3 at argmin G = 2.

11.1.1 Unconstrained Optimization

You already know how to solve unconstrained optimization problems in a single
variable: set the derivative to the function equal to zero and solve. This method
of solution relies on the observation that both maxima and minima occur when
the slope of a function is zero. However, it is important to remember that not
all roots of the derivative are maxima or minima. Inflection points (where the
derivative changes sign) also have derivatives equal to zero. (Any point where
the derivative of a function equals zero is called an extreme point or extremum.
Setting the derivative of a function equal to zero and solving for the extrema is
called extremizing a function.) You must always remember to test the root of the
derivative to see if you’ve found a minimum, maximum, or inflection point. The
easiest test involves the sign of the second derivative. If the second derivative at
the point is positive, you’ve found a minimum. If it’s negative, you’ve found a
maximum. If the second derivative is zero, you’ve found an inflection point.

A similar approach works for optimizing multivariate functions. In this case
one solves for points where the gradient is equal to zero, checking that you’ve not
found an inflection point (called “saddle points” in higher dimensions).

11.1.2 Constrained Optimization

1 2 3 40

2

4

6

G

5 (G)

Figure 11.4: The yellow region is the feasible
space (G ≤ 1). The global argmin occurs at
G = 1. The derivative of the function is not
zero at this point.

Constrained optimization problems cannot be solved by finding roots of the deriva-
tives of the objective. Why? It is possible that the minima or maxima of the un-
constrained problem lie outside the feasible region of the constrained problem.
Consider our previous example of 5 (G) = 3 + (G − 2)2, which we know has an
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argmin at G = 2. Say we want to solve the constrained problem

min 5 (G) = 3 + (G − 2)2 s.t. G ≤ 1

The root of the derivative of 5 is still at G = 2, but values of G greater than one are
not feasible. From the graph we can see that the minimum feasible value occurs at
G = 1. The value of the derivative at G = 1 is −2, not zero.

In general, constrained optimization is a challenging field. Finding global
optima for constrained problems is an unsolved area or research, one which is
beyond the scope of this course. However, there are classes of problems that we
can solve to optimality using the tools of linear algebra. These problems form the
basis of many advanced techniques in data science.

11.2 Convexity

Many “solvable” optimization problems rely on a property called convexity. Both
sets and functions can be convex.

11.2.1 Convex sets

A set of points is convex if given any two points in the set, the line segment
connecting these points lies entirely in the set. You can move from any point
in the set to any other point in the set without leaving the set. Circles, spheres, and
regular polygons are examples of convex sets.

G

H
G

H

G

H
G

H

Figure 11.5: The blue shapes are convex. The
red shapes are not convex.To formally define convexity, we construct the line segment between any two

points in the set.

Definition. A set ( is convex if and only if given any x ∈ ( and y ∈ ( the points
�x + (1 − �)y are also in ( for all scalars � ∈ [0, 1].

G

�G + (1 − �)H H

Figure 11.6: The segment connecting G and H
can be defined as �G + (1 − �)H for � ∈ [0, 1].

The expression �x+ (1−�)y is called a convex combination of x and y. A convex
combination of two points contains all points on the line segment between the
two points. To see why, consider the 1-dimensional line segment between points 3
and 4.

�(3) + (1 − �)(4) = 4 − �, � ∈ [0, 1]
When � = 0, the value of the combination is 4. As � moves from 0 to 1, the value
of the combination moves from 4 to 3, covering all values in between.
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Convex combinations work in higher dimensions as well. The convex combi-

nation of the vectors
(
1
0

)
and

(
0
1

)
is

�

(
1
0

)
+ (1 − �)

(
0
1

)
=

(
�

1 − �

)
The combination goes from the first point

(
0
1

)
when � = 0 to the second point

(
1
0

)
when � = 1. Halfway in between, � = 1/2 and the combination is

(
1/2
1/2

)
, which is

midway along the line connecting
(
1
0

)
and

(
0
1

)
. Sometimes it is helpful to think of

a convex combination as a weighted sum of x and y. The weighting (provided by
�) moves the combination linearly from y to x as � goes from 0 to 1.

G

� = 0.3
� = 0.5

� = 0.8

H

Figure 11.7: A convex combination in 2D:
�G + (1 − �)H.

11.2.2 Convex functions

There is a related definition for convex functions. This definition formalizes our
visual idea of convexity (lines that curve upward) and concavity (lines that curve
downward).

convex concave

Figure 11.8: Convex functions curve upward.
Concave functions curve downward.

Definition 1. A function 5 is convex if and only if

5 (�x + (1 − �)y) ≤ � 5 (x) + (1 − �) 5 (y), � ∈ [0, 1]

G H

5 (�G
+ (1
− �
)H)� 5

(G)
+ (1
− �
) 5 (
H)

�G + (1 − �)H

Figure 11.9: The chord connecting any two
points of a convex function (red) lies above the
function (blue).

This definition looks complicated, but the intuition is simple. If we plot a
convex (upward curving) function, any chord – a segment drawn between two
points on the line – should lie above the line. We can define the chord between any
two points on the line, say 5 (x) and 5 (y) as a convex combination of these points,
i.e. � 5 (x) + (1 − �) 5 (y). This is the right hand side of the above definition. For
convex functions, we expect this cord to be greater than or equal to the function
itself over the same interval. The interval is the segment from x to y, or the convex
combination�x+(1−�)y. The values of the function over this interval are therefore
5 (�x + (1 − �)y), which is the left hand side of the definition.

11.2.3 Convexity in Optimization

Whydowe care about convexity? In general, finding local optima during optimiza-
tion is easy; just pick a feasible point and move downward (during minimization)
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until you arrive at a local minimum. The truly hard part of optimization is find-
ing global optima. How can you be assured that your local optimum is a global
optimum unless you try out all points in the feasible space?

Fortunately, convexity solves the local vs. global challenge for many important
problems, as we see with the following theorem.

Theorem. When minimizing a convex function over a convex set, all local minima are
global minima.

Convex functions defined over convex sets must have a special shape where
no strictly local minima exist. There can be multiple local minima, but all of these All local minima are less than or equal to the

global minimum. Strictly local minima must
be less than the global minimum.

local minima must have the same value (which is the global minimum).
Let’s prove that all local minima are global minima when minimizing a convex

function over a convex set.

Proof. Suppose the convex function 5 has a local minimum at x
′ that is not the

global minimum (which is at x
∗). By the convexity of 5 ,

5 (�x
′ + (1 − �)x∗) ≤ � 5 (x′) + (1 − �) 5 (x∗)

Since x
′ is at a local, but not global, minimum, we know that 5 (x′) > 5 (x∗). If we

replace 5 (x∗) on the right hand side by the larger quantity 5 (x′), the inequality (≤)
becomes a strict inequality (<). (Even if both sides were equal, adding a small
amount to the right hand side would still make it larger.) We now have

5 (�x
′ + (1 − �)x∗) < � 5 (x′) + (1 − �) 5 (x′)

which, by simplifying the right hand side, becomes

5 (�x
′ + (1 − �)x∗) < 5 (x′)

This statement says that the value of the function 5 on anypoint on the line segment For a simpler, yet less intuitive argument, let
� = 1. Then the inequality becomes 5 (x′) <
5 (x′), which is nonsense.

from x
′ to x

∗ is less than the value of the function at x
′. If this is true, we can find a

point arbitrarily close to x
′ that is belowour supposed localminimum 5 (x′). Clearly,

5 (x′) cannot be a local minimum if we can find a lower point arbitrarily closer to it.
Our conclusion contradicts our original supposition. No local minimum can exist
that are not equal to the global minimum. �

The previous proof seemed to rely only on the convexity of the objective func-
tion, not on the convexity of the solution set. The role of convexity of the set is
hidden. When we make an argument about a line drawn from the local to the
global minimum, we assume that all the points on the line are feasible. Otherwise,
it does not matter if they have a lower objective than the local minimum, since they
would not be allowed. By assuming the solution set is convex, we are assured that
any point on this line is also feasible.
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11.2.4 Convexity of Linear Systems

This course focuses on linear functions and systems of linear equations. It would
be enormously helpful if linear functions and the solution set of linear systems
were convex. Then we can look for local optima during optimization and know
that we’ve found global optima.

Let’s first prove the convexity of linear functions. For a function to be convex,
we require that a line segment connecting any two points in the line lie above
or one the line. For linear functions, this is intuitively true. The line segment
connecting any two points is the line itself, so it always lies on the line. As a more
formal argument, we describe a linear function as the product between a vector
of coefficients c and x, i.e. 5 (x) = c

T
x. Let’s start with the values of the function By convention, all vectors are column vectors,

including c; this requires a transposition to be
conformable for multiplication by x.

over the range spanned by arbitrary points x and y. The segment of the domain
corresponds to the convex combination �x + (1 − �)y. The values of the function
over this interval are

5 (�x + (1 − �)y) = c
T(�x + (1 − �)y)

= c
T�x + c

T(1 − �)y
= �c

T
x + (1 − �)cT

y

= � 5 (x) + (1 − �) 5 (y)

which satisfies the definition of convexity: 5 (�x + (1 − �)y) ≤ � 5 (x) + (1 − �) 5 (y).
Now let’s turn to a linear system Ax = b. We want to show that the set of Following the conventions of the optimization

field, we call the right hand side of linear sys-
tems the column vectorb, not y aswe have said
previously.

all solutions for this system (the solution space) is convex. Let’s assume we have
two points in the solution space, x and y. Since x and y are solutions, we know
that Ax = b and Ay = b. If the solution set is convex, any point in the convex
combination of x and y is also a solution.

A(�x + (1 − �)y) = A�x = A(1 − �)y
= �Ax + (1 − �)Ay

= �b + (1 − �)b
= b

Since A(�x+ (1−�)y) = b, we know that all points on the line between x and y are
solutions, so the solution set is convex.



Chapter 12

Gradient Descent

It’s time to formalize the walking downhill method of optimization. This sec-
tion introduces the gradient descent method, an iterative technique that takes steps
downhill until a local minimum is found. As we will see in the coming chapters,
gradient descent is not a single algorithm but instead a family of related algo-
rithms. The defining feature of gradient descent is the use of local curvature of the
objective function — the gradient — to identify the downhill direction.

12.1 Optimization by Gradient Descent

Let’s begin with some notation. Our goal is to solve the problem

min
x

5 (x),

which is read “minimize, by choice of x, the function 5 (x)”. We are searching for an
input vector x that minimizes the scalar-valued function 5 . Optimization problem
require that the objective function 5 be scalar-valued. If the objective is a multivariate function f, we

can minimize ‖f‖ instead.Gradient descent is an iterative technique. We begin with an initial guess x
(0),

we find a sequence of better guesses

x
(0) → x

(1) → x
(2) → · · · → x

(:−1) → x
(:)

so that each guess decreases the objective function:

5 (x(0)) > 5 (x(1)) > 5 (x(2)) > · · · > 5 (x(:−1)) > 5 (x(:)).
We keep iterating with gradient descent until there is no downhill direction, at
which point we are by definition at a local minimum. The final guess x

(:) will be
the local argmin.
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The key to gradient descent is the update rule, a formula that tells us how to
pick a next guess from the current guess. Imagine we are in the middle of gradient
descent at guess x

(:). The update rules says that the next guess x
(:+1) will be our

current guess plus a step in the downhill direction, or

x
(:+1) = x

(:) +
(
downhill step

)
.

Whatever this “downhill step” is, we can already see that it must be a vector. The
current guess x

(:) is a vector, and addition is only defined if the downhill step is a
vector of the same size. Each entry in the downhill step vector is a downhill step
for the corresponding entry in our guess x

(:).
It helps to break the downhill step vector into two parts: a vector that points in

the downhill direction, and a scalar that represents the size of the step we’ll take.
We can rewrite the update rule as a product of these two parts:

x
(:+1) = x

(:) +
(
step size

)
(downhill direction) .

The step size is simply a scalar, so let’s call it 
 and forget about it for a while. The
step size is a hyperparameter of gradient descent. A hyperparameter is a variable in
a training algorithm that is not a parameter of the model. Hyperparameters affect
how a model is trained but are not used to make predictions once the training is
complete. We’ll have much more to say about the step size hyperparameter later
in the chapter. For now, our update rule is

x
(:+1) = x

(:) + 
 (downhill direction) .

G

5 (G)

Figure 12.1: The gradient points in the uphill
direction. The red tangent line has a positive
gradient (slope), but the downhill direction is
in the negative direction. The blue tangent
line has a negative gradient but the downhill
direction points toward +G.

What direction is downhill? We can find a direction that decreases the objective
function 5 using its gradient. Let’s define the function g(x) to be the gradient of
the function 5 . Notice how the function g is vector-valued (and therefore written
in bold font). The gradient is a vector of partial derivatives, one for every input:

g(x) =

©­­­­­«

% 5
%G1
% 5
%G2
...
% 5
%G=

ª®®®®®¬
.

Importantly, the gradient points uphill, not downhill, as shown in Figure 12.1.
The downhill direction is the negative of the gradient: −g(x).

Putting everything together, our final update rule is

x
(:+1) = x

(:) − 
 g(x(:)) (12.1)
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where g(x(:)) is the gradient of the objective function evaluated at the current
iterate x

(:). We’ll see this update rule repeatedly, and we must remember the
origin of the minus sign. The new iterate x

(:+1) is the previous iterate x
(:) plus a

step in the downhill direction; however, the downhill direction is −g(x(:)), and the
negative sign on the gradient can mislead us into thinking that we’re subtracting,
rather than adding, a step in the downhill direction. If you find yourself forgetting
why there’s a minus sign, just remember that the update rule can also be written
x
(:+1) = x

(:) + 
 (−g(x(:))).
In multivariable calculus you may have written the gradient of a function 5 (x)

as ∇ 5 (x). We avoid this notation in favor of g(x) for three reasons.

1. The symbol g(x) is simpler and can be bolded to remind us that the gradient
is a vector.

2. It emphasizes the connection between optimization and root finding using
the gradient (g(x) = 0).

3. Somegradient descent algorithmsdonot use the true gradient of the objective
function, instead relying on an approximation or estimate of the gradient. We
can think of the function g(x) as any “gradient-like” thing and still use the
update rule in equation (12.1).

Let’s stop for some examples. The first example is a the one-dimensional
polynomial

5 (G) = G4 − 2G3 − 23G2 + 24G + 147.

We can use gradient descent to find a local minimum beginning with the guess
G(0) = 2. In one dimension, the gradient of 5 (G) is the ordinary derivative

6(G) =
35

3G
= 4G3 − 6G2 − 46G + 24.

Let’s assume we’re given a step size 
 = 0.01; we’ll play around with the step size
later. We begin iterating with our update rule.

G(1) = G(0) − 
 6(G(0))
= 2 − 0.01 6(2)
= 2.6

The initial iterate G(0) had an objective value of 5 (G(0)) = 103. After one round of
gradient descent, the next iterate (G(1) = 2.6) decreased the objective function to
5 (G(1)) = 64.4656. The following tables shows the results of the first eight iterations.
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Iteration G 5 (G)
0 2 103
1 2.6 64.46560
2 3.25856 24.53280
3 3.77059 5.41262
4 3.97379 3.03341
5 3.99919 3.00003
6 3.99998 3.00000
7 4.00000 3.00000
8 4.00000 3.00000

12.2 Linear Least-squares with Gradient Descent

As a second example, let’s fit a linear model using gradient descent. As we
learned in Chapter 8, the linear regression problem y = X# can be solved by
pseudoinverting the design matrix X to find the parameter estimates # = X

+
y.

Pseudoinversion gives the least-squares estimates for the parameters #, and the
same solution can be obtained by minimizing the loss function

!(#) = 1
2

=∑
8=1

(
H

pred
8
− Htrue

8

)2

Let’s solve the linear regression problem using gradient descent on the loss func-
tion. In the univariate case with an intercept, our linear model takes the form
Hpred = �0 + �1G. Using the five data points from the table on page 59, our loss
function is

!(#) = 1
2

5∑
8=1

(
�0 + �1G8 − Htrue

8

)2

Be careful with the notation here. The function we are minimizing is the loss ! (not
5 as before), and we are searching for a parameter vector # to minimize the loss.
As for all linear regression problems, the pairs of data (G8 , H8) are known.

Our first step is to calculate the gradient of the loss function

g(#) =
(
%!
%�0
%!
%�1

)
.



106

Following the procedure in Section 8.3 for taking derivatives of sums, the entries
in the gradient function are

%!

%�0
=

5∑
8=1

(
�0 + �1G8 − Htrue

8

)
and

%!

%�1
=

5∑
8=1

(
�0 + �1G8 − Htrue

8

)
G8 .

The update rule for gradient descent is

#(:+1) = #(:) − 
 g(#(:)),

remembering again that we are iterating over the parameters #, not x. We need an
initial guess for the parameters, and lacking any insight from the problem we will
choose the zero vector: #(0) = 0. Using a step size 
 = 0.1, we can begin iterating.

Iteration Loss �0 �1

0 1.1375 0.0 0.0
50 0.0599557 0.0979449 1.04396
100 0.0544082 0.0332741 1.17936
150 0.0542539 0.0224895 1.20194
200 0.0542496 0.0206910 1.20571
250 0.0542495 0.0203911 1.20634
300 0.0542495 0.0203411 1.20644
350 0.0542495 0.0203327 1.20646
400 0.0542495 0.0203313 1.20646
450 0.0542495 0.0203311 1.20646
500 0.0542495 0.0203311 1.20646

Gradient descent found the same parameters as pseudo-inversion for our linear
regression example. This is expected since the least-squares problem is convex and
has a unique solution. Gradient descent terminates at a local minimum, and all
local minima are global minima for convex problems. If gradient descent works so
well, why don’t we use it on linear least-squares problems in practice? There are
two reasons:

1. Statistics of the parameters (?-values, confidence intervals, etc.) are computed
from matrices that are also used to find the pseudoinverse. If we used
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gradient descent on a linear regression problem, we would need to perform
most of the pseudoinverse calculation anyway.

2. Gradient descent requires an initial parameter guess and a value for the step
size hyperparameter. Both of these can be avoided by pseudoinversion.

Still, gradient descent plays an important role in regression. In the coming
chapters we will introduce two powerful extensions to linear models — logistic
regression and regularized regression — that cannot be fit using pseudoinversion.
We will use gradient descent to parameterize these models.

12.3 Termination Conditions

Using the update rule (equation (12.1)) we can always find a next estimate of the
input that is closer to a local argmin. In both of the previous examples, however, the
iterates became so close to the local argmin that iterates stoppedmoving. Gradient
descent conveniently self-terminates once we find a local minimum. To see why,
consider the update rule x

(:+1) = x
(:) − 
 g(x(:)). Imagine if x

(:) is exactly a local
argmin. The gradient is flat in all direction at a local minimum, so g(x(:)) = 0.
Therefore, the update rule says that

x
(:+1) = x

(:) − 
 g(x(:))
= x
(:) − 0

= x
(:)

and the next iterate remains at the local argmin.
Self-termination is convenient, but it is rarely practical. Gradient descent ter-

minates only when the gradient is exactly zero, so termination requires we land
exactly on the a local argmin (or at least landwithin the precision of the computer).
Usually we’re not so lucky. Also, self-termination requires the gradient to shrink
nicely to zero in a small region around the local argmin. As we will see in Chap-
ter 14, there are many important optimization problems where such continuity is
not guaranteed.

Alternatively, we can terminate gradient descent when we are satisfactorily
near a local minimum. Two criteria are commonly used to halt gradient descent:

1. Iterate convergence. As we approach a local minimum and the gradient
shrinks, the steps between iterates should also decrease. One strategy is to
terminate gradient descent if the iterate x

(:+1) is very close to x
(:). Formally,

we define some small value & and stop iterating if



x
(:+1) − x

(:)

 < &. Any
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norm (1-norm or 2-norm) will work, but a common choice is the max-norm
(∞-norm) that measures the maximum distance between any corresponding
elements in x

(:+1) and x
(:). Themax-normwill keep gradient descent running

if at least one dimension is still moving.

2. Objective convergence. The value of the objective function should also
stop changing as gradient descent approaches a local minimum. A second
termination strategy is to stop iterating when�� 5 (x(:+1)) − 5 (x(:))

�� < &

for some small number &. Terminating based on the objective value avoids
the need to choose a norm since the objective function is always scalar-
valued. However, a large change in the input to a function may lead to a
small change in the objective value, so the objective convergence method
may cause gradient descent to terminate while the iterates are still changing.

Both iterate and objective convergence haveweaknesses. For example, objective
convergence should not be used if the objective function is very flat, and iterate
convergence can fail to terminate if the gradient is discontinuous near the local
minimum. Some software packages apply both tests and terminate if either the
iterates or objective values converge.

If the gradient is zero at a local minimum, why can’t we use the magnitude of
the gradient as a termination test? There are at least two reasons to avoid testing
the gradient. First, it is common to use gradient descent with only an estimate of
the gradient, and this estimate may not vanish completely at the local minimum.
Second, terminating based on the gradient assumes the gradient is continuous and
defined near the local argmin. As we’ll see later, we can still solve optimization
problems with gradient descent even if none of these conditions hold.

12.4 * Step Sizes

Walking downhill via gradient descent will bring us closer to a local minimum, but
we also need to stop walking once we reach the bottom. The process of stopping
at a local minimum is called convergence. We need some assurance that gradient
descent will converge. We want our steps to become smaller as we approach the
local minimum and disappear completely if we happen to arrive exactly at the local
minimum. Conversely, if we are far away from the local minimum, we want to
take large steps so we reach the local minimum in a reasonable amount of time.
Think about finding a parking space for your car. You drive relatively quickly up
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and down the lanes of the parking lot until you close in on an open spot; then you
slow down considerably to avoid hitting adjacent cars when entering the spot.

The step taken during each iteration of gradient descent is the product of two
parts: a step size 
 and the direction g. We have twomethods of altering the length
of the step at each iteration: 1.) decrease the step size 
 as the iterations increase,
or 2.) decrease the magnitude of the gradient. Let’s consider each method, starting
with the step size.

12.4.1 * Step Size Scheduling

Gradient descent moves us closer to a local minimum at each iteration, so decreas-
ing the step size 
 at each iteration will force us to take smaller steps as we get
closer to the local minimum. The problem is timing these two events. We cannot
say in advance how many iterations we need to get close to the local minimum.
Decreasing the step size early on will slow convergence, but decreasing it too late
can make us overshoot or zigzag around the local minimum.

Changing the step size requires the creation of a step size schedule. The schedule
is simply a method that tells the gradient descent algorithm what step size to use
at each iteration. A step size that follows a schedule requires a slight change in
notation for the update rule at each iteration:

x:+1 = x: − 
:∇ 5 (G:).

Rather than have a single, constant value 
 for all iterations, the step size at
iteration : is 
: . The value of 
: is determined by the step size schedule.

There are many methods for constructing step size schedules, and the optimal
schedule depends heavily on the function 5 to be minimized. While there is no
universally best schedule, there are some properties of schedules that guarantee
convergence. Remember that gradient descent goes on forever, moving us ever
closer to a local minimum but never exactly there. We usually terminate gradient
descent after a finite number of iterations, but we could let it run forever using
infinitelymany step sizes from the schedule. Onemethod for ensuring convergence
constrains the sums of all the step sizes in the schedule. The two constraints are

∞∑
:=0


: = ∞ (12.2)

and
∞∑
:=0


2
:
< ∞. (12.3)
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Equation (12.2) forces our step sizes to be large enough so that gradient descent
does not stop prematurely before we are near the local minimum. The infinite sum
of all the step sizes in the schedule must diverge to infinity.

It’s easy to find a sequence of step sizes that sum to infinity — a constant step
size would satisfy equation (12.2). We also need the step sizes to decrease as each
iteration moves us closer to the local minimum. One method is to have the step
size approach zero, and equation (12.3) ensures the decrease is rapid enough for
convergence. Taken together, equations (12.2) and (12.3) define a “sweet spot” for
step sizes schedules. The step sizes must be large enough so their sum diverges,
but small enough so their squared sum converges. One step size schedule that
satisfies the convergence criteria is 
: = 1/: (with 
0 ≡ 1 to avoid dividing by
zero). The first seven step sizes from this schedule are shown in the table below.

iteration 0 1 2 3 4 5 6
step size (
:) 1.000 1.000 0.500 0.333 0.250 0.200 0.167

The series 
: = 1/: is the harmonic series, and the sum of this series diverges. The
sum of the squares of the harmonic series converges, although the exact value it
converges to is not important.

Youmight have noticed that if the sum of the step sizes is infinite but the sum of
the squared step sizes is finite, then 
2

:
< 
: , at least when : is large. This implies

that eventually 
: < 1, and in practice it is rare to start with step sizes larger than
one.



Chapter 13

Logistic Regression

Let’s return to the problem of binary classification where a feature vector x is used
to predict the class H of a sample. We’ve already used the Support Vector Machine
to solve the binary classification problem. Recall that the SVM uses optimization
to find a hyperplane a · x = 1 that separates the two classes. Although the SVM
works well, it is difficult to understand how the algorithm predicts the class of new
data. We could try to examine the support vectors that lie nearest the separating
hyperplane, but in general we cannot directly interpret SVM models.

By contrast, we’ve seen how straightforward it is to interpret linear statistical
models. We are able to assign meaningful interpretations to the fitted coefficients,
and the relative importance of the predictor variables is quantified by the statistical
outputs of the fitlm function. Ideally we would use linear models for the binary
classification problem. However, there are two problems:

• The predictions of a classification algorithm are binary, while linear models
make continuous predictions.

• Even if we force a linear model to make discrete predictions, we must also
force the outputs of a linear model to stay within the set of classes.

In this chapter we develop a variant of linear regression called logistic regression.
Logistic regression uses a linear model to predict binary outcomes. Rather than
predict the class of a sample directly, a logistic regression model predicts the
probability that the sample is in each class. We will show how a link function can
be used to map the output of a linear model into a bounded range, like the interval
[0, 1] for probabilities.
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13.1 Predicting Odds

You’re probably familiar with probabilities as the long-run expectation of an un- Pun intended.
certain process. Logistic regression uses a related concept called the odds. Youmay
have used the term “odds” interchangeably with “probability,” but they are not
the same. Let’s assume that a random variable H has two possible outcomes, 0 and
1. The odds of H is the ratio of the probability that H equals 1 to the probability
that H equals 0, or

odds(H) =
%(H = 1)
%(H = 0) .

For example, if odds(H) = 2 then the probability that H = 1 is twice as large as
the probability that H = 0. We can convert between probabilities and odds by Odds are usually expressed as a proportion, so

an odds of 2 is written as 2:1, or “two to one”.remembering that probabilities sum to one, or P(y=0) + P(y=1) = 1. Then

odds(H) =
%(H = 1)
%(H = 0) =

%(H = 1)
1 − %(H = 1) ⇒ %(H = 1) =

odds(H)
1 + odds(H) .

The odds function lives interval [0,∞). The odds of H become infinite as the
probability that H = 1 increases. The odds of H go to zero as the probability that
H = 0 increases. This means that the logarithm of the odds, or the “log odds” Some people go further and refer to the log

odds as the “lods”.is a continuous value in the interval (−∞,∞), which is the same range as the
predictions of a linear model. We can build a binary classifier by using a linear
model to predict the log odds of the response variable H, i.e.

log(odds(H)) = �0 + �1G1 + · · · + �?G? .

The function log(odds(H)) is called the logit function. Because it links the response
variable to the linear models, we refer to the logistic (and other similar functions)
as link functions. To summarize:

H ∈ 0 or 1
%(H = 1) ∈ [0, 1]
odds(H) ∈ [0,∞)

log(odds(H)) ∈ (−∞,∞)

13.2 From Odds to Probabilities

Log odds can be predicted using linear models, but it is difficult for most people to
interpret the odds, much less their logarithm. Ideally we would have our logistic
regression model predict probabilities. The logistic regression model from above
was

log(odds(H)) = �0 + �1G1 + · · · + �?G? .
Exponentiating both sides to gives

odds(H) = 4�0+�1G1+···+�?G? ≡ 4 C
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where the placeholder C equals the output of the linear model. We can solve for the
probability that H equals 1 using the relationship between probabilities and odds.

%(H = 1) =
odds(H)

1 + odds(H)

=
4 C

1 + 4 C

=
1

1 + 4−C
This function is called the logistic or sigmoid function, and its shape is shown in For the last stepwedividedboth the numerator

and denominator by 4 C .Figure 13.1. The output of the function is restricted to the interval [0, 1] even though
the inputs are unbounded. The bounded output makes it possible to interpret the
outputs of the logistic function as probabilities.

Making predictions with logistic models is a two-step process. First, we use a
linear model to predict the placeholder value C. The value of C is used to calculate
the probability that the response is equal to one. If wewere interested in classifying
the response, wewould say that H = 1 if %(H = 1) > 0.5 and choose H = 0 otherwise.
Note that the point %(H = 1) = 0.5 occurs when C = 0. When classifying with a
logistic regression model, our response prediction switches from class 0 to class 1
when the output of the linear model C = �0 + �1G1 + · · · + �?G? switches from
negative to positive.

−5 0 5
0

0.5

1

C

%
(H
=

1)

Figure 13.1: The logistic function.

Logistic regression is used for binary classification, so the model should alter-
nate between predicting class 0 and class 1. The sigmoid shape is a compromise; it
is smooth and continuous but still transitions rapidly from 0 to 1. The smoothness
of the logistic function (and its convenient derivative) makes it easier to fit logistic
regression models by gradient descent.

13.3 Example: Predicting the risk of Huntington’s Disease

Huntington’s Disease is an inherited genetic condition caused by repeated CAG se-
quences in the Huntingtin (HTT) gene. Toomany CAG repeats create a “glutamine
knot" in the protein, causing toxic protein aggregates in neurons. Symptoms of
Huntington’s appear later life, and an individual’s risk for developing the disease
correlates with the number of CAG repeats. Source: Walker FO. Huntington’s disease. The

Lancet. 2007: 369, (9557), 218–228.
# of CAG Repeats Disease Outcome

< 28 Not affected.
28–35 Increases risk.
36–40 Affected; some offspring affected.
> 40 Affected; all offspring affected.
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Let’s build amodel to predict the probability of developingHuntington’s based
on the number of CAG repeats. The response variable is binary (Huntington’s
disease or not) and the predictor variable is continuous (the number of CAG repeats
in theHTT gene). To train the model we counted the number of CAG repeats in 50
individuals with and without the disease.
Matlab code

1 load huntington.mat
2 scatter(hunt.CAGs,categorical(hunt.disease))
3 xlabel(’CAG repeats’,axargs{:})
4 ylabel("Huntington ’s disease",axargs{:})

We see from these data that predicting disease status with low (<25) or high
(>35) CAG repeats is straightforward. However, there is a region between 25 and 35
CAG repeats where disease status is ambiguous. Let’s build a logistic regression
model to predict Huntington’s status. We use the Matlab function fitglm, for
“fit generalized linear model”. The fitglm function is similar to fitglm; the first
argument is a table of data, and the second argument is a formula describing the
model. However, fitglm can use a wide range of link functions and datatypes
when fitting linear models. For logistic regression using binary responses we need
to specify the logit link function and a binomial distribution.

Matlab code

1 model = fitglm(hunt,’disease ~ CAGs’,’link’,’logit’, ...
2 ’Distribution’,’binomial’)

Matlab output

1 model =
2 Generalized linear regression model:
3 logit(disease) ~ 1 + CAGs
4 Distribution = Binomial
5
6 Estimated Coefficients:
7 Estimate SE tStat pValue
8 ________ _______ _______ ________
9 (Intercept) -14.032 5.7832 -2.4263 0.015252

10 CAGs. 0.50558 0.20395 2.4789 0.013179
11
12 50 observations , 48 error degrees of freedom
13 Dispersion: 1
14 Chi^2-statistic vs. constant model: 55, p-value = 1.18e-13

Remember that the model we’re fitting is

log(odds(disease)) = �0 + �1[CAGs].
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We know the best fit values of �0 and �1 from the output of the fitglmmodel:

log(odds(disease)) = −14.032 + 0.50558[CAGs].

We can also rewrite this model to predict the probability of having Huntington’s
disease

%(disease) = 1
1 + 4−14.032+0.50558[CAGs] ,

which we plot below along with the training data.

Matlab code

1 scatter(hunt.CAGs,hunt.disease)
2 hold on
3 cag_range = linspace(5,50,100);
4 beta = model.Coefficients.Estimate;
5 plot(cag_range , 1./(1+exp(-(beta(1)+beta(2)*cag_range))))
6 hold off
7 xlabel(’CAG repeats’,axargs{:});
8 ylabel(’$$P(\mathrm{disease})$$’,axargs{:});

We are often interested in the point where %(disease) = 0.5, as this is the
threshold number of CAG repeats where a person is equally likely to have or not
have Huntington’s. The logistic function reaches its midpoint when the linear
model moves from negative to positive. Thus we can simply solve for when

When the output of the linear model is zero,

%(H = 1) = 1
1 + 40 =

1
2

.

�0 + �1[CAGs] = 0.

−14.03 + 0.51[CAGs] = 0⇒ [CAGs] = 14.03/0.51
≈ 28 CAG repeats

13.4 Interpreting coefficients as odds ratios

The coefficients of the linear part of a logistic regression equation are not directly
interpretable. The coefficients describe how the linear model changes given a
unit change in the input variables, but the outputs of the linear model undergo
a nonlinear transformation before becoming a probability. Instead, we interpret
logistic regression models by calculating the change in odds that accompany a
unit change in an input variable. This change is odds is called the odds ratio. For
example, we can define the odds ratio that corresponds to increasing variable G8
by 1 as

odds ratio(G8) =
odds(G8 + 1)
odds(G8)

.
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Let’s calculate the odds ratio for Huntington’s disease that accompanies an
increase of one CAG repeat.

odds ratio([CAGs]) = odds([CAGs] + 1)
odds([CAGs])

=
4�0+�1([CAGs]+1)

4�0+�1[CAGs]

=
4�0 4�1[CAGs]4�1

4�0 4�1[CAGs]

= 4�1

Since �1 = 0.51 in out model, having one more CAG repeat increases the odds
of developing Huntington’s disease by 40.51 = 1.67-fold. For any logistic regres-
sion model, the odds ratio for variable G8 is the exponential of the corresponding
coefficient �8 .

odds ratio(G8) =
odds(G8 + 1)
odds(G8)

= 4�8

If �8 is negative the odds ratio 4�8 will be less
than one and the odds will decrease.You may have heard news reports that “doing - increases your risk of .".

Researchers performing this type of study often use logistic regression models
to predict the odds of developing condition . based on input variable -. The
reported increase in risk is simply the odds ratio associated with the coefficient of
-.

13.5 Fitting Logistic Regression Models

We fit a logistic regression model using a set of = training point (x8 , H8), where x8

is a vector of input features and H8 is a binary output variable (either 0 or 1). The
output of the logistic regression model is %(H8), the probability that H8 = 1 given
an input x8 . A perfect model would predict that

%(H8) = 1 when H8 is 1
%(H8) = 0 when H8 is 0

A common loss function for logistic regression is

!(#) = 1
=

=∑
8=1

[
−H8 log%(H8) − (1 − H8) log(1 − %(H8))

]
(13.1)
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where %(H8) is the output of the logistic function

%(H8) =
1

1 + 4−C , C = �0 + �1G1 + · · · + �?G? .

Let’s examine the summand of the loss function

−H8 log%(H8) − (1 − H8) log(1 − %(H8)).

When H8 = 0, this expression reduces to − log(1−%(H8)), which reaches a minimum
of zero only when %(H8) = 0. (When %(H8) ≠ 0, 1 − %(H8) is less than one, so
− log(1 − %(H8)) is a positive, nonzero value). The other option is that H8 = 1, in Remember that %(H8) is a probability, so itmust

lie in the range [0, 1]. Also, the logarithm of 1
is 0, the logarithm of a number smaller than 1
is negative; and the logarithm of 0 approaches
negative infinity.

which case the loss summand becomes − log%(H8). This expression is minimized
when %(H8) = 1. Both cases are what we want in a loss function — to minimize the
loss we set %(H8) = 0 when H8 = 0 and %(H8) = 1 when H8 = 1.

The loss function in equation (13.1) isn’t the only loss function that would work
for logistic regression. The function %(H8)1−H8 (1 − %(H8))H8 is also minimized when
the probability %(H8)matches the value of H8 . However, this loss function also has a
maximum value of one for each training point. We prefer that our loss functions be
unbounded above so that nomatter how terrible ourmodel is, making it worsewill
always increase the loss. Said another way, we always want to distinguish between
“bad” solutions and “very bad” solutions; otherwise, if we started training at a
very bad solution, there would be little change in the loss by improving to amerely
bad solution. Since the derivative of the loss function drives our training updates,
any plateau in our loss function will decrease the training rate.

The loss function in equation (13.1) did not appear out of thin air. Minimizing
(13.1) is equivalent to maximizing the likelihood of the model predicting the train-
ing values. Actually, it maximizes the log-likelihood since taking the logarithm of
the likelihooddoesn’t change the argmax butmakes the function easier to compute.

13.5.1 Gradient Descent

Our loss function is nonlinear and must be minimized using gradient descent or
another iterative approach. We first need to compute the gradient of the loss with
respect to each parameter in #.

g(#) =
©­­­«
%!
%�0
...
%!
%�?

ª®®®¬
The loss function ! depends on the probabilities %, which depend on the output C
of the linear model, which depends on the parameters #. This nested structure is
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a perfect opportunity to use the chain rule to compute the entries of the gradient.
For a single parameter � 9

%!

%� 9
=

1
=

=∑
8=1

%!8
%%8

%%8
%C8

%C8
%� 9

.

Let’s compute each of the righthand side derivative in turn. For the loss function,
it is simpler to compute the derivative separately when H8 = 0 and H8 = 1.

%!8
%%8

=

{
1

1−%(H8 ) , when H8 = 0
− 1
%(H8 ) , when H8 = 1

The probability % is the output of the logistic function, which has a convenient
derivative.

%%8
%C8

= %(C8)(1 − %(C8))

=
1

1 + 4−C8
1

1 + 4 C8

Finally, we compute the derivative of the linear model C = �0 + �1G1 + · · · + �?G? ,
being careful to handle the special case of the intercept (8 = 0).

%C8
%� 9

=

{
1, when 9 = 0
G8 9 , when 9 > 0

Thenotation G8 9 requires an explanation. Remember thatwehave = pairs of training
data (x8 , H8). The value G8 9 is the 9th entry in the 8th feature vector of the training
set.

With the derivative in hand, all we need to begin gradient descent is an initial
guess for the parameter vector #. A convenient guess is # = 0. Setting all param-
eters equal to zero makes the output of the linear model C = 0 for every training
point. The logistic function takes the value 0.5 when C = 0, so a zero initial guess
begins right in the middle with a prediction that H8 is equally likely to be 0 or 1 for
every training point. Unless we have some prior information that says otherwise,
guessing 0 or 1 with equal probability is a fine place to start.

An accompanying Matlab workbook implements gradient descent to fit the
Huntington’s model from earlier in this chapter.



Chapter 14

Bias, Variance, and Regularization

14.1 Learning vs. Memorizing

Just because we trained a model does not mean it learned anything useful from
the data. We need to test the model to assess its accuracy. We test a model
using data that were not used for training so we can distinguish between learning
and memorizing. Memorizing occurs when a model simply remembers the correct
outputs for each of the training inputs. When shown a training input again, the
model can produce the correct result. However, if the model is given an input that
was not included in the training set (i.e. an input that it has not memorized), the
model cannot predict the correct value. By contrast, learning occurs when a model
can predict correctly without memorizing. Models learn by finding relationships
in the input features that hold information about the correct output. A model
that learns well can usually make good predictions on new data since the feature
relationships are still valid. Models that predict accurately on data that were not
part of the training data are said to generalize.

Models that cannot generalizewell are not useful. Suchmodels have onlymem-
orize the correct answers for the training data, but we already know the answers
to the training data! Testing our models with our training data cannot distinguish
between models that memorize andmodels that learn. We need separate data that
have not been shown to the model. Models that memorize will perform poorly on
these data, but models that learned will do better.

All models more accurately predict the results of their training data compared
to the testing data, so do not be alarmed if the testing accuracy is lower than
the training accuracy. The reduced performance on testing data is called the
generalization gap, and it affects all models even if they are not memorizing. In this
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chapter we will discuss why the generalization gap occurs and how to reduce it.
We will also discuss methods to assess both the training and testing accuracy of
our models.

14.2 Holdout

The simplest approach for validating a model is called holdout. Holdout removes
a minority of the training data and sets it aside for testing. The holdout set can be
used for validation since it was not used during training.

There are no rules for how much of the training data should be removed for
holdout. The number of holdout observations, not the fraction of the entire dataset,
is most important. For example, imagine if we only included two points in our
holdout set when training a binary classifier (like logistic regression). There are
only three possible outcomes when testing ourmodel: 0/2, 1/2, or 2/2, making our
accuracy 0, 0.5, or 1.0. This is clearly a crude assessment of ourmodel’s accuracy. If It is common in machine learning to refer to

accuracy as a fractional value, not as a percent-
age.

the holdout dataset includes = observations, the resolution of our accuracy estimate
is 1/=. A holdout set with 10 observations can only estimate the accuracy to within
0.1, and this is an upper bound. Small holdout sets are hampered by stochasticity.
Testing points that happen to be similar to a training data are easier for a model to
predict correctly. A few “good” or “bad” points can have a big effect if the holdout
set is small.

Perhaps counterintuitively, larger training sets require a smaller fraction of data
be reserved for holdout. A training set with 20 observations could require 50%
or more the data be set aside for holdout, and even then the validation accuracy
would have a precision of no less than 0.1. By contrast, the Netflix Prize contest,
a community-based competition to predict personalized ratings for movies, used
a training dataset with over 100 million observations. The final validation set
included only 1.36% of these points to award a $1,000,000 prize to the winning
team. Although the Netflix Prize holdout set con-

tained over one million observations, the top
two teams tied for accuracy. The tiebreaker
went to the team that submitted 20 minutes
before the other.

Holdout works well for large datasets where only a small fraction of the data
need to be excluded from training. In small datasets a large fraction of data need
to be removed for validation. After validation, the holdout data can be added

back to the training set before training a final model. Thus the holdout data are
not “lost”, but for small datasets with large holdout the validation accuracy will be
a poor estimate of the accuracy of the final model trained with the entire dataset.
For large datasets, the expense of retraining the model often outweighs the gain in
accuracy from including the small fraction of holdout points.
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14.3 Cross Validation

Cross validation is an alternative to holdout. In cross validation, all points in
the dataset are used for training and testing, but never at the same time. Cross
validation begins by splitting the dataset into a set of : groups of roughly equal
size. Each group of data is called a fold, and points are randomly assigned to the
folds. For example, at dataset with 16 points could be divided into : = 4 folds.

︸         ︷︷         ︸
fold 1

︸         ︷︷         ︸
fold 2

︸         ︷︷         ︸
fold 3

︸         ︷︷         ︸
fold 4

To begin cross validation, one of the folds is set aside for validation, similar to
holdout. A model is trained using the remaining : − 1 folds and tested against the
holdout fold.

︸         ︷︷         ︸
fold 1 (test)

︸         ︷︷         ︸
fold 2 (train)

︸         ︷︷         ︸
fold 3 (train)

︸         ︷︷         ︸
fold 4 (train)

Next we put fold 1 back into the training set and set aside fold 2 for testing.
Then we re-train our model using folds 1, 3, and 4 and validate with fold 2.

︸         ︷︷         ︸
fold 1 (train)

︸         ︷︷         ︸
fold 2 (test)

︸         ︷︷         ︸
fold 3 (train)

︸         ︷︷         ︸
fold 4 (train)

This process continues : = 4 times, with the final model trained on folds 1–3
and validated with the data in fold 4. The final step is to average the accuracies
across all : folds. This average is reported as the final accuracy, and a full model
can be trained using all of the data.

The advantage of :-fold cross validation is that every point in the dataset is used
for testing, so the method is not sensitive to which data are selected for holdout.
However, the method is still stochastic as the accuracy of each model depends on
how the data are randomly assigned to the folds. A :-fold cross validation requires
training : separate models in addition to the final model with all of the data. This
might be costly for very large datasets, so cross validation is more common in
small- to medium-sized problems.

14.3.1 Leave-one-out Cross Validation

There is no rule for determining the number of folds (:) for a cross validation.
Smaller datasets benefit from higher values of : since fewer points are held out
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at a time and training multiple models is not computationally prohibitive. One
extreme of :-fold cross validation occurswhen : equals the number of points in the
dataset. In this case each fold contains only a single point, hence the name leave-
one-out cross validation. Leave-one-out is the most computationally demanding Leave-one-out is abbreviated “L1O”. Assign-

ing two points per fold is called leave-two-out
(L2O) cross validation.

strategy for cross validation, as a new model must be trained for each point in
the dataset. However, leave-one-out provides the best estimate of the accuracy
of the final model trained with all the data. Each of the validation sub-models is
trainedwith all but one point, so thesemodels closely resemble the performance of
a model trained with all of the data. Since each fold contains one point, there is no
randomness to the validation procedure if the training algorithm is deterministic.

14.4 Bias vs. Variance

Cross validation measures the accuracy of our models. We need to understand
why our models are inaccurate before we can develop strategies to improve them.
As a reminder, we care most about generalization accuracy— the ability to predict
results that were not included in the training set. The fundamental source of all
model inaccuracies is limited data. Take, for example, the data in Figure 14.1. The
center panel shows a continuous function that we are trying to learn using six data
points. The other eight panels show six randomly sampled points from the center
function. It would be difficult to estimate the original function using any of these
subsets alone. Any model fit to a subset of data would not generalize well to parts
of the function that were not we represented in the training data.

Most datasets contain more than six training points, but remember that the
function in Figure 14.1 is one-dimensional. Many of ourmachine learningmethods
are applied to high-dimensional data, so the density of training data may be lower
than the sampling shown in the Figure 14.1. Data acquisition is enormously
expensive, so we are often left with far less training data than we would like.

A model’s error can be divided into two sources. The first source is bias. Bias
appears when the model underfits the data because the model lacks the flexibility
to match the underlying system. Imagine fitting a model that predicts how many
textmessages a person sends per day based on their age. Even if we hadmillions of
training data, we could not possibly predict everyone’s texting patterns using such
a simple model. A teenager with a phone might text a lot, but not all teenagers
have phones. Our model’s predictions will have high bias since adding more data
or switching to a new sample will not improve the predictions. Bias is robust to
subsampling, meaning we will fit similar models to different datasets.

You can see high-bias models in the first column of Figure 14.2. Each model
is a two-parameter linear model (H = �0 + �1G) fit to six points sampled from the
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Figure 14.1: Samples of six points vary in their approximations of the function in the center panel.

true function. Although the six-point samples varywidely, the fitmodels and their
generalization error are similar. Although the models are not sensitive to changes
in the dataset, they do not approximate the function well. After all, we cannot
expect a purely linear model to reproduce the nonlinear function shown at the top
of the figure.

The other source of generalization error is model variance. Models with high
variance are overfit to the data. High variance can been seen in right column of
Figure 14.2. These are six-parameter curvilinear models (H = �0 + �1G + �2G

2 +
· · · + �5G

5). Notice how well these models predict the training data (blue circles).
In fact, since there are six parameters and six data points, these models predict the
training data exactly! However, you should also notice how poorly some of these
models would generalize. The top model predicts a huge spike between 0.5 and
1, and the middle model predicts an increase, not decrease, near 1.0. Neither of
these model match the true function at the top of the figure. Models with high
variance have two characteristics: 1.) they are good at memorizing training data,
and 2.) they are highly sensitive to the training data. The two-parameter models
on the left are similar for all three datasets, but the six-parameter models have very
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Figure 14.2: A model’s bias and variance depend on the number of parameters.
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different shapes.
The key to fitting models is to balance bias and variance. We want models that

areflexible enough tomatch the true system (lowbias) but not overly sensitive to the
specifics of our training data (low variance). A three-parameter quadratic model
(H = �0 + �1G + �2G

2) achieves this balance for the function in Figure 14.2 (center
column). The models are not exact, but each model resembles the true function
regardless of which points are included in the training set. This example shows
overly simple and overly complex models can both lead to poor generalization.

14.5 Regularization

Figure 14.2 is a toy example. We knew the true function and were able to collect
multiple subsamples to test our model’s accuracy. This allowed us to adjust the
number of parameters until we found a model that balanced bias and variance. In
reality, we won’t be able to tune and retrain our model, partly because we don’t
know the true function we are trying to replicate.

A more general strategy is to start with a model that has more parameters than
necessary and try to minimize overfitting. This approach is called regularization,
and it relies on an observation that overfit models tend to have many parameters
with large magnitudes. Keeping parameters small during training tends to pro-
duce models that generalize better. We regularize an algorithm by penalizing it
whenever the model’s parameters get too big. Formally, this is accomplished by
adding a regularization term to the objective function.

14.5.1 The LASSO

Let’s use regularization to prevent overfitting of a linear model. Linear models are
trained using a quadratic loss function

min
#

=∑
8=1

(
H

pred
8
− Htrue

8

)2
.

Here # is a vector of parameters. If the linearmodel has input features x, the output
Hpred = x · #. We can substitute this model into our loss function to make it clear
that we are minimizing the loss by selecting a set of parameters #.

min
#

=∑
8=1

(
x · # − Htrue

8

)2
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Now we can add regularization. Remember that the goal of regularization is to
keep the parameters in # from becoming too large and overfitting the model. We
can add a term to our objective function so our algorithms tries to minimize both
the total loss and the magnitudes of the parameters.

min
#

=∑
8=1

(
x · # − Htrue

8

)2 + �
?∑
8=1
|�8 | (14.1)

The regularization term adds up the magnitudes of the parameters. This sum is
weighted by a hyperparameter � that balances the two objectives: minimize loss
or minimize the parameter magnitudes. The hyperparamter � can be any non-
negative value. Setting � = 0 eliminates all regularization, making Equation (14.1)
equivalent to normal least-squares regression. Setting � to a large value will focus
most of the algorithm’s attention on keeping the parameters small. If � is large
enough, the algorithm will ignore the loss entirely and set all of the parameters to
zero. There is no definite rule for selecting a value for �. Like all hyperparameters,
it must be tuned for each problem to maximize performance. Cross validation can
be used to ensure the value of � promotes generalization of the trained model.

The regularized form of linear regression in Equation (14.1) is called the “least
absolute shrinkage and selection operator”, or LASSO. The effects of regularization
can be seen in Figure 14.3. When � = 0, the LASSO is equivalent to standard
linear regression, so a six-parameter model overfits random samples of six data
points. Adding regularization (� = 0.001) decreases the variance of the models,
as seen by the similar shapes of the models in the center column. Increasing the
regularization (� = 0.01) further reduces the variance, and all the models in the
right column have the same overall shape. However, we are starting to see the
effects of over-regularizing the model. Regularization penalizes large parameters,
so the models are beginning to underpredict the data. Said another way, high
regularization reduces the variance so much that we begin to see increased model
bias.

The goal of regularization is to improve generalization, but this goal causes
decreased accuracy on the training data. The first column of Figure 14.3 fits the
training data exactly, but the curves are clearly overfit and do not resemble the
true function. The regularized models in columns two and three do not predict
the training exactly, although they will generalize better since they more reliably
predict data outside the training set. Do not be alarmed if adding regularization
decreases the training accuracy of your model. You are reducing your model’s
ability to memorize in hopes that it will generalize better.

The example in Figure 14.3 uses regularization to keep a polynomial model
from overfitting data. This is only one application of the LASSO. As discussed in
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Figure 14.3: Increasing values of � decrease the variance of linear models trained by the LASSO.

section 14.5.2, the absolute value in the LASSO leads to solutions where many of
the parameters are set to zero. This selectionproperty is usefulwhenwe have far too
many input features for our model. For example, many genome-wide association
studies use logistic regression to compute the risk of a disease given mutations
(SNPs) in a genome. Every humans has thousands of SNPs, so any regression
model trained with all SNPs would be vastly overfit. A properly regularized
logistic regression model will only assign nonzero effect sizes to a small number
of informative SNPs, essentially selecting the best SNPs for predicting the risk of
the disease. Regularization not only improves generalization; it also helps refine
datasets by selecting interesting features.

14.5.2 Generalized Regularization

The LASSO combines regularization and linear regression, but regularization can
be applied to any machine learning technique. In general, machine learning algo-
rithms find parameter values that minimize a loss function, so they can be cast as
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optimization problems of the form

min
#

=∑
8=1

!(#)

where # is a vector of parameters and ! is a loss function that depends on the
parameters. Just as we did with the LASSO, we can add a regularization term to
the objective function to give the regularized problem

min
#

=∑
8=1

!(#) + �


#



:
.

The hyperparameter� determines how badlywe penalize the parameters based on
the sum of their :-norms. The LASSO used the 1-norm (the absolute value) of each
parameter, but we can use any norm to measure the size of each parameter. Each
norm has a different effect on the regularization, as we explain in the following
sections.

0-norm Regularization

The 0-norm measures the number of nonzero parameters. The 0-norm of any
nonzero value is equal to 1, or 

�

0 =

{
0, � = 0
1, � ≠ 0

.

The 0-norm is not a true norm since it violates some of the defining properties of
norms. However, it is useful for “counting” nonzero values. Regularizing with
the 0-norm penalizes the number of nonzero parameters, not their magnitudes.
A 0-norm regularized model will minimize the loss function using the smallest
number of parameters. This regularization strategymimics what we accomplished
in Figure 14.2 by changing the number of parameters in our curvilinear models.
Changing the model from six to two parameters simplified the model but did not
place any constraints on the values of the parameters.

The 0-norm would be excellent for regularization except for one problem —
it is computationally intractable. Problems that include a 0-norm are essentially
discrete problems where parameters are either “on” or “off”. Such problems are
combinatorially complex and their difficulty increases exponentiallywith the num-
ber of parameters. Large-scale machine learning problems would be impossible
to solve if they included 0-norm regularization. Fortunately, the 1-norm approxi-
mates many of the features of the 0-norm in a computationally efficient way.
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1-norm Regularization

As its name implies, the LASSO performs “shrinkage and selection” on the param-
eters of a linear model. Shrinkage penalizes parameters based on their magnitude,
while selection encourages the model to have nonzero values for only a subset of
the parameters. Selection is akin to 0-norm regularization, but the LASSO used
only the 1-norm, or absolute value, when penalizing the parameters. It turns out
that 1-norm regularization performs both operations. Minimizing the absolute
value of parameters forces many of the parameters to zero. While there is no
guarantee that minimizing the 1-norm will achieve the least number of nonzero
parameters (as the 0-norm would), the 1-norm provides a decent approximation
of the 0-norm. At the same time, the 1-norm also penalizes parameters based on
their magnitudes, all while remaining computationally tractable!

The combination of shrinkage, selection, and efficiencymake the 1-norm a pop-
ular choice for regularization. It is ideal for generating sparse solution, i.e. models
with relatively few nonzero parameters. Despite its strengths, the 1-norm has two
disadvantages. First, the derivative of the absolute value is discontinuous at zero,
so 1-norm regularized problems can be difficult to solve by gradient descent. Alter-
native methods like coordinate descent or stochastic gradient descent (Chapter ??)
can be used instead. Second, the solutions to 1-norm regularized problems are not
unique. Many different parameter sets can have the same 1-norm penalty.

2-norm Regularization

The 2-norm, like the 1-norm, penalizes based on the magnitude of the model’s
parameters; however, this is where the similarities end. The 2-norm penalty in- Regularization with the 2-norm is also called

least-squares or Tikhonov regularization.creases quadratically with the size of a parameter, so 2-norm regularization tries
very hard to avoid any large parameters. Instead, the 2-norm encourages solutions
with many nonzero parameters with small magnitudes. This is the opposite of the
sparse solutions produced by 1-norm regularization. Problems with the 2-norm
have unique solutions and continuous derivatives (provided the loss function is
continuously differentiable). Both of these features are attractive for large-scale
optimization.

The Elastic Net: 1-norm + 2-norm Regularization

Some algorithms try to combine the desirable features of both 1-norm and 2-norm
regularization. Both regularization terms are added to the objective function.

min
#

=∑
8=1

!(#) + �1


#

1 + �2



#

2
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Each type of regularization is weighted by separate hyperparameter: �1 for the
1-norm and �2 for the 2-norm. The relative size of these hyperparameters deter-
mines the importance of each type of regularization. Setting �1 = 0 is equivalent
to 2-norm regularization, and setting �2 = 0 performs 1-norm regularization.
Combining both 1-norm and 2-norm regularization is sometimes called Elastic Net
regularization.



Chapter 15

Geometry

15.1 Geometry of Linear Equations

Why do linear systems have convex solution spaces? Before answering, we should
understand the shape of individual equations (rows) in the systems Ax = b. The
equation corresponding to the 8th row is

A(8 , :) · x = 18

which we will simplify by using the notation

a · x = 1

where a and x are vectors and the value 1 is a scalar. In two dimensions this
expression defines a line

01G1 + 02G2 = 1.

The above representation of a line is the standard form, which differs from the slope-
intercept form you remember from algebra (H = <G + 1). It seems intuitive why
the slope-intercept form is a line; a change in G produces a corresponding change
<ΔG in H, with an intercept 1 when G = 0. What is the analogous reasoning for
why a · x = 1 is a line?

First, we note that the vector a always point perpendicular, or normal to the line.

For the horizontal line H = 3, the vector a =

(
0
1

)
points vertically. For the vertical

line G = 3, the vector a =

(
1
0

)
point horizontal. For the line G1 + G2 = 1, a =

(
1
1

)
,

which is still perpendicular to the original line.

(
0
1

) G2 = 3

(
1
0

)
G1 = 3

(
1
1

) G1 + G2 = 5

Figure 15.1: Thevector a is alwaysnormal (per-
pendicular) to the line a · x = 1.
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To help visualize the equation a · x = 1, we need to know the length of a. The
easiest solution is to normalize a by dividing both sizes of the equation by the norm
of a.

1
‖a‖ a · x = 1/‖a‖ .

If we use our previous notation of â for the normalized form of a and define scalar
3 = 1/‖a‖, we have

â · x = 3.
The equation â · x = 3 is called theHesse normal form of a line, plane, or hyperplane.
We know that â is a unit vector normal to the line. What is the meaning of 3? Let’s
compute the dot product â · x using an arbitrary point x on the line.

3 = â · x = ‖â‖ ‖x‖ cos� = ‖x‖ cos�.

Thus, 3 is the projection of the magnitude of x onto the normal vector. For any
point on the line, this projection is always the same length – the distance between
the origin and the nearest point on the line. Conversely, a line is the set of all vectors
whose projection against a vector â is a constant distance (3) from the origin.

�

â

â · x = 3

3

x

Figure 15.2: A line is the set of all points x

whose projection onto â is the distance 3.

The same interpretation follows in higher dimensions. In 3D, the expression
â · x = 3 defines a plane with normal vector â at a distance 3 from the origin.
This definition fits with the algebraic definition of a plane that you may have seen
previously: 01G1 + 02G2 + 03G3 = 3. In higher dimensions (four or more), this
construct is called a hyperplane.

Remember that when analyzing an expression of the form â ·x = 3, the constant
on the right hand side (3) is only equal to the distance between the line and the
origin if the vector â is normalized. For example, the line

3G1 + 4G2 = 7

has coefficient vector a =

(
3
4

)
, which is not normalized. To normalize a, we divide

both sides by ‖a‖ =
√

32 + 42 = 5, yielding

3
5 G1 +

4
5 G2 =

7
5 .

Now we can say that the distance between this line and the origin is 7/5.

15.2 Geometry of Linear Systems

no solutions
(parallel)

one solution
(intersecting)

infinite solutions
(colinear)

Figure 15.3: A system of linear equations can
have zero, one, or infinitely many points of
intersection.

The equation â · x = 3 defines a hyperplane. It is also a single row in the linear
system Ax = b. What does the entire system of equations look like? First, let’s



133

consider a set of three equations in two dimensions (so we can visualize them as
lines). Solutions to Ax = b are points of intersection of all three equations. If the
lines are parallel, no solutions exist. If the lines all intersect at one point, there is
a unique solution. If the lines are colinear (all fall upon the same line), infinitely
many solutions exist. Note that these are the only options – zero, one, or infinitely
many solutions, just as predicted by the grand solvability theorem. It is impossible
to draw three straight lines that intersect in only two places.

If linear systems Ax = b are a set of intersecting lines in 2D, what is do the
inequalities Ax ≤ b represent? Each inequality states that the projection of x onto
the normal vector a must be less than 3. These points form a half-plane – all the
points on one side of a hyperplane. The system Ax ≤ b has a solution space that is
the overlap of multiple half-planes (one for each row in A). As we proved earlier,
this solution set is a convex set.

A

â · x ≤ 3

B

Figure 15.4: A. One inequality defines a half-
plane. B.Multiple half-planes intersect to form
a convex solution set for the system Ax ≤ b.



Chapter 16

Support Vector Machines

In this chapter we focus on classification, the problem of using features to predict
which class an observation belongs to. We are particularly interested in distin-
guishing among two classes, a problem known as binary classification. We will
introduce the Support Vector Machine, or SVM, a framework for solving classifi-
cation problems using optimization and linear algebra. “Machine” refers to an algorithm. We’ll ex-

plainwhat a support vector is later in the chap-
ter.

As an example, consider the following dataset that reports the blood pressure
and cholesterol levels of 20 patients. Twelve of the patients have not experienced a
heart attack, but the remaining eight have. Let’s load and plot the data.

Matlab code

1 load HeartAttack.mat
2 hatk

BloodPressure Cholesterol HeartAttack
1 133 160 ’no’
2 152 166 ’no’
3 128 168 ’no’
4 89 169 ’no’
5 86 170 ’no’
6 86 175 ’no’
7 111 177 ’no’
8 145 179 ’no’
9 108 185 ’no’
10 118 193 ’no’

Matlab code
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1 gscatter(hatk.BloodPressure ,hatk.Cholesterol , ...
2 hatk.HeartAttack ,’kr’);
3 hold on
4 xlabel(’mean arterial pressure [mmHg]’);
5 ylabel(’cholesterol [mg/dl]’);
6 title(’Heart Attack Status’)
7 hold off

It’s clear that we can separate the patients who experienced a heart attack from
the ones who did not. However, the separation requires knowledge of both blood
pressure and cholesterol levels. There is no cholesterol level alone that separates
the two classes, and the same is true for blood pressure. We want to identify a
hyperplane that separates the classes so we can predict the heart attack risk for
other patients.

For small datasets like this, it is possible to simply draw a line that separates
the classes. For problems with only two features, classification is often trivial.
However, classifying with thousands of features cannot be done ad hoc. Fortu-
nately, everything we will learn in lower dimensions generalizes easily to higher
dimensions.
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16.1 Separating Hyperplanes

First we code the points by setting one group equal to +1 and the other group to
−1. For our heart attack data, patients who experienced a heart attack are +1 and The term code in this context is unrelated to

computer programming.the rest are −1.

Matlab code

1 hatk.HeartAttack = [-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
2 1 1 1 1 1 1 1 1]’

BloodPressure Cholesterol HeartAttack
1 133 160 -1
2 152 166 -1
3 128 168 -1
4 89 169 -1
5 86 170 -1
6 86 175 -1
7 111 177 -1
8 145 179 -1
9 108 185 -1
10 118 193 -1

The +1 and −1 designations are arbitrary — it doesn’t matter which group is
which. Switching the +1 and −1 codings will give the same classifer. The resulting
hyperplane will have the normal vector pointing the opposite way, but this does
not affect performance of the classifier.

Our goal is to find a hyperplane that separates the +1 and −1 points. Recall
that any hyperplane can be represented in the Hesse form as This is the Hesse form, not the Hesse normal

form since a has not been normalized.
a · x = 1

where a is a vector of coefficients and 1 is a scalar. Normally our goal is to find
values for the vector x. For classification problems we know that values of x (the
features) for each point. Our goal is to find the coefficients a and the scalar 1 that
define the separating hyperplane.

We want to choose a and 1 such that all of the +1 points are on one side of the
hyperplane and all of the −1 points lie on the other size. By convention, we will
put the +1 points above the plane, which we enforce with the constraint

a · x ≥ 1
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for any values x that are coded +1. Similarly, we require the −1 points be below
the hyperplane with the constraint

a · x ≤ 1

for any values x that are coded −1. Note that there are usually infinitely many
hyperplanes that can separate the+1 and−1points. Wewant tofind thehyperplane
that maximizes the gap, or margin, between the +1 and −1 points. The hyperplane
that maximizes this gap is called the maximal margin hyperplane.

To find themaximalmargin hyperplane, we startwith twoparallel hyperplanes.
We require all the +1 points be above the top plane and all −1 points be below the
bottom plane. We push the two planes apart until the top plane hits the nearest
+1 point and the bottom plane hits the nearest −1 point. When the gap between
the two planes is maximized, we know that the maximal margin hyperplane will
sit halfway in between the two planes.

Let’s formalize this procedure. We define the top plane to be a · x = 1 + 1 and
the bottom plane to be a ·x = 1−1. Since both planes have the same normal vector a

we know they are parallel. The ±1 terms are arbitrary since we aren’t requiring the
vector a to be a unit vector. How far apart are these planes? Let’s convert the planes
to the Hess normal form. Then the top plane is at a distance of (1 + 1)/‖a‖ from
the origin and the bottom plane is at distance (1 − 1)/‖a‖. The distance between
the planes is therefore

1 + 1
‖a‖ −

1 − 1
‖a‖ =

2
‖a‖

The gap between the planes is inversely proportional to the magnitude of a.
Maximizing the separation between the planes is equivalent to minimizing the
magnitude of a. All together, the maximal margin hyperplane is the solution to
the following constrained optimization problem:

minimize
a,1

‖a‖

subject to a · x ≥ 1 + 1 for the +1 points
a · x ≤ 1 − 1 for the −1 points

This might seem like a difficult optimization, but there is an important simplifica-
tion. Remember the definition of the magnitude

‖a‖ =
√
02

1 + 02
2 + · · · + 02

=

The square root function is monotonically increasing, meaning it always increases as
its argument increases. Because of monotonicity, minimizing the square root of an Functions like cos(G) are notmonotonic as they

both increase and decrease as G increases.
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input is equivalent to minimizing the input itself. Rather than minimize ‖a‖ we
can simply minimize the expression 02

1 + 02
2 + · · · + 02

= . The classification problem
becomes

minimize
a,1

02
1 + 02

2 + · · · + 02
=

subject to a · x ≥ 1 + 1 for the +1 points
a · x ≤ 1 − 1 for the −1 points

Since the objective is purely quadratic with positive coefficients, we know it is
convex. We also know that the constraints are linear and therefore also convex. We
are minimizing a convex function over a convex set, which is easily solved.

16.2 Setting up the SVMQuadratic Program

The SVM problem outlined above is a quadratic program (QP), a term in optimiza-
tion that means a problem with a quadratic objective function and a set of linear
constraints. Let’s set up a QP for four observations from our heart attack data:

Blood Pressure Cholesterol HeartAttack
133 160 −1
89 169 −1

164 224 +1
153 242 +1

1. Define the dimensions of the problem. We have two predictor variables:
blood pressure and cholesterol level. Let’s set G1 = blood pressure and G2 =
cholesterol. We then know that a has two dimensions (01 and 02).

2. Write out the objective function. The objective is to minimize the magnitude
of a, or

minimize
01 ,02 ,1

02
1 + 02

2

3. Write out constraints for each point by substituting values for x. We have
four points so wewill have four constraints. The constraints for the −1 points
are

13301 + 16002 ≤ 1 − 1
8901 + 16902 ≤ 1 − 1
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For the +1 points we have

16401 + 22402 ≥ 1 + 1
15301 + 24202 ≥ 1 + 1

All together, the quadratic program for finding the SVM classifier for these data is

minimize
01 ,02 ,1

02
1 + 02

2

subject to 13301 + 16002 ≤ 1 − 1
8901 + 16902 ≤ 1 − 1

16401 + 22402 ≥ 1 + 1
15301 + 24202 ≥ 1 + 1

16.3 SVM in Matlab

Setting up an SVMproblem by hand is informative but unwieldy for large datasets.
There are several software libraries for efficiently formulating and solving SVM
problems. We will use the fitcsvm function to fit an SVM classifier. The function The name fitcsvm stands for “fit classifier

SVM".takes two arguments: a matrix of features and a vector with class codings. Let’s
begin by putting our two features into a matrix.

Matlab code

1 features = [hatk.BloodPressure hatk.Cholesterol]

Matlab output

1 features = 20x2
2 133 160
3 152 166
4 128 168
5 89 169
6 86 170
7 86 175
8 111 177
9 145 179

10 108 185
11 118 193

Now we call fitcsvm and store the output in a variable that we’ll call model.

Matlab code

1 model = fitcsvm(features, hatk.HeartAttack)



140

Matlab output

1 model =
2 ClassificationSVM
3 ResponseName: ’Y’
4 CategoricalPredictors: []
5 ClassNames: [-1 1]
6 ScoreTransform: ’none’
7 NumObservations: 20
8 Alpha: [3x1 double]
9 Bias: -16.4864

10 KernelParameters: [1x1 struct]
11 BoxConstraints: [20x1 double]
12 ConvergenceInfo: [1x1 struct]
13 IsSupportVector: [20x1 logical]
14 Solver: ’SMO’

The model object contains lots of information. Some important pieces are the
values for a (model.Beta) and value of the scalar 1 (model.Bias)

Matlab code

1 model.Beta

Matlab output

1 ans = 2x1
2 0.0465
3 0.0488

Matlab code

1 model.Bias

Matlab output

1 ans = -16.4864

We can use these values to plot the maximal margin hyperplane.

Matlab code

1 bp = hatk.BloodPressure; ch = hatk.Cholesterol;
2 gscatter(bp,ch,hatk.HeartAttack ,’kr’);
3 hold on
4 xlabel(’mean arterial pressure [mmHg]’);
5 ylabel(’cholesterol [mg/dl]’);
6 plot(bp(model.IsSupportVector), ...
7 ch(model.IsSupportVector), ...
8 ’ko’, ’MarkerSize’,10);
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9 plot(bp, ...
10 -model.Beta(1)/model.Beta(2)*bp ...
11 - (model.Bias)/model.Beta(2))
12 legend(’normal’,’disease’,’Support Vector’,’Classifier’);
13 hold off

We’ve also identified the support vectors on the above plot. Remember that to
find the maximal margin hyperplane we push two parallel planes outward until
they hit the nearest +1 and −1 points. These nearest points are called the support
vectors since they “support" the planes. Support vectors are what determine the
location of themaximalmargin hyperplane; their importance gives rise to the name
Support Vector Machine.

So far we’ve trained an SVM model. We can also make predictions about new
patients using the model object and the Matlab function predict. The predict
function accepts a model object and a matrix of features for the unknown observa-
tions. It returns predictions (+1 or−1) for each observation. Let’smake predictions
for two new patients with the following data:

Blood Pressure Cholesterol
153 230
99 132
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Matlab code

1 predict(model, [153 230; 99 132])

Matlab output

1 ans = 2x1
2 1
3 -1

Our model predicts the first patient would have a history of heart attack while
the second patient would not.

16.4 :-fold Cross Validation in Matlab

Performing a :-fold cross validation requires 1.) randomizing the folds, 2.) retrain-
ing the model, and 3.) classifying each fold. Fortunately, there is a Matlab function
to perform :-fold cross validation. We can perform a 5-fold cross validation on our
heart attack SVM model as follows
Matlab code

1 xval = crossval(model,’Kfold’,5)

Matlab output

1 xval =
2 classreg.learning.partition.ClassificationPartitionedModel
3 CrossValidatedModel: ’SVM’
4 PredictorNames: {’x1’ ’x2’}
5 ResponseName: ’Y’
6 NumObservations: 20
7 KFold: 5
8 Partition: [1x1 cvpartition]
9 ClassNames: [-1 1]

10 ScoreTransform: ’none’

The object returned by crossval contains information about how the folds
were created and tested. The accuracy of the classifier is measured by the loss, with
lower loss meaning a better model. We can find the loss by calling the kfoldLoss
function on our crossval return object. Note the capital “L" in kfoldLoss.

Matlab code

1 kfoldLoss(xval)

Matlab output

1 ans = 0
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16.5 Soft Classifiers

Our heart attack data was perfectly classifiable since we could cleanly separate the
+1 and −1 classes. This is not always the case, especially for biological datasets.
Let’s add two points to our dataset and replot the data.

Matlab code

1 hatk(end+1,:) = {155,215,-1};
2 hatk(end+1,:) = {110,215, 1};
3 gscatter(hatk.BloodPressure ,hatk.Cholesterol , ...
4 hatk.HeartAttack ,’kr’);
5 hold on
6 xlabel(’mean arterial pressure [mmHg]’);
7 ylabel(’cholesterol [mg/dl]’);
8 legend(’normal’,’disease’)
9 hold off

With the new data, it doesn’t appear that we can perfectly separate the heart
attacks from the rest. Let’s try to refit our model.

Matlab code

1 mdl = fitcsvm([hatk.BloodPressure hatk.Cholesterol], ...
2 hatk.HeartAttack);
3 gscatter(hatk.BloodPressure ,hatk.Cholesterol , ...
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4 hatk.HeartAttack ,’kr’);
5 hold on
6 xlabel(’mean arterial pressure [mmHg]’);
7 ylabel(’cholesterol [mg/dl]’);
8 plot(hatk.BloodPressure , ...
9 -mdl.Beta(1)/mdl.Beta(2)*hatk.BloodPressure ...

10 - (mdl.Bias)/mdl.Beta(2))
11 legend(’normal’,’disease’,’Classifier’);
12 hold off

Nowwe have some points that sit on the wrong side of the classifier. Our accu-
racy should have decreased (i.e. out loss during cross validation should increase).

Matlab code

1 xval = crossval(mdl,’Kfold’,5);
2 kfoldLoss(xval)

Matlab output

1 ans = 0.0909

The SVM formulation we described above is called a hard classifier since it
requires that all points be on the correct side of the classifier. In practice, SVM
software packages use a soft classifier where points can appear on the wrong side.
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When solving SVM problems with soft classifiers, the goal is to both maximize the
separation and minimize the number of incorrectly classified points. We will not
discuss the mathematical formulation of soft classifiers in this book.



Part III

High-Dimensional Systems
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Chapter 17

Vector Spaces, Span, and Basis

17.1 Vector Spaces

Vector spaces are collections of vectors. Themost common spaces areR2, R3, andR=
— the spaces that include all 2-, 3-, and =-dimensional vectors. We can construct Remember that R2 is not a subspace of R3;

they are completely separate, non-overlapping
spaces.

subspaces by specifying only a subset of the vectors in a space. For example, the set
of all 3-dimensional vectors with only integer entries is a subspace of R3.

17.2 Span

A set of < vectors v1 , v2 , . . . , v< is said to span a space + if any vector u in + can
be written as a linear combination of the vectors v1 , v2 , . . . , v< . This is equivalent
to saying there exist scalars 01 , 02 , . . . , 0< such that

u = 01v1 + 02v2 + · · · + 0<v< .

Writing a vector u as a linear combination of v1 , v2 , . . . , v< is called decomposing u

over v1 , v2 , . . . , v< . If a set of vectors spans a space, they can be used to decompose
any other vector in the space.

We’ve already seen vector composition using a special set of vectors ê9 , the unit
vectors with only one nonzero entry at element 9. For example, the vector

©­«
−2

4
5

ª®¬ = −2 ©­«
1
0
0

ª®¬ + 4 ©­«
0
1
0

ª®¬ + 5 ©­«
0
0
1

ª®¬ .
Thus the vectors ê1 , ê2 , ê3 spans R3. In general, the set of vectors ê1 , ê2 , . . . , ê=
spans the space R= . Are these the only sets of vectors that span these spaces?
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No, there are infinitely many sets of vectors that span each space. Consider the

vectors
(
1
1

)
and

(
−1

1

)
. We can show that these vectors span R2 by showing that any

vector u in R2 can be written as a linear combination

u =

(
D1
D2

)
= 01

(
1
1

)
+ 02

(
−1

1

)
.

Finding the coefficients 01 and 02 is akin to solving the system of linear equations

01 − 02 = D1

01 + 02 = D2

which has the unique solution

01 =
D1 + D2

2 , 02 =
D2 − D1

2 .

To demonstrate, let u =

(
−2

4

)
. Then 01 = 1 and 02 = 3, so

01

(
1
1

)
+ 02

(
−1

1

)
=

(
1
1

)
+ 3

(
−1

1

)
=

(
1 − 3
1 + 3

)
=

(
−2

4

)
.

We’ve shown that there are least two sets of vectors that span R2,
{(

1
0

)
,

(
0
1

)}
and

{(
1
1

)
,

(
−1

1

)}
. How can we say there are infinitely many? If vectors v1 and v2

span a space + , then the vectors :1v1 and :2v2 also span + for any scalars :1 and
:2. To prove this, remember that any vector u can be decomposed onto v1 and v2,
i.e.

u = 01v1 + 02v2

=
01
:1
(:1v1) +

02
:2
(:2v2)

Since (01/:1) and (02/:2) are simply scalars, we’ve shown thatu can be decomposed
onto the vectors :1v1 and :2v2. Therefore, :1v1 and :2v2 must also span R2. For Since :1 and :2 are arbitrary, this allows us

to generate infinitely many sets of vectors that
span any space from a single spanning set.example, the vectors

(
3
0

)
and

(
0

−1/2

)
are scalar multiples of

(
1
0

)
and

(
0
1

)
. The
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former two vectors must therefore span R2, so we can decompose the vector
(
−2

4

)
onto them: (

−2
4

)
= −2

3

(
3
0

)
− 8

(
0

1/2

)
.

Similarly, if v1 and v2 span a space + , the vectors v1 and (v1 + v2) also span + :

u = 01v1 + 02v2

= 01v1 + 02(v1 + v2) − 02v1

= (01 − 02)v1 + 02(v1 + v2)

If scalars 01 and 02 decompose u over v1 and v2, then (01 − 02) and 02 decompose
u over v1 and (v1 + v2).

17.3 Review: Linear Independence

We said before that vectors v1 , v2 , . . . , v= are linearly independent if and only if

01v1 + 02v2 + · · · + 0=v= = 0

implies that all coefficients 01 , 02 , . . . , 0= are zero. No linear combination of a set
of linearly independent vectors can be the zero vector except for the trivial case
where all the coefficients are zero. We often say that a set of vectors are linearly
dependent if one of the vectors can be written as a linear combination of the others,
i.e.

v8 = 01v1 + · · · + 08−1v8−1 + 08+1v8+1 + · · · + 0=v= .

Moving the vector v8 to the right hand side

0 = 01v1 + · · · + 08−1v8−1 − v8 + 08+1v8+1 + · · · + 0=v=

we see 1.) a linear combination of the vectors sums to the zero vector on the left,
and 2.) at least one of the coefficients (the −1 in front of v8) is nonzero. This is
consistent with are above definition of linear independence. We said these vectors
were not linearly independent, so it is possible for a linear combination to sum to
zero using at least one nonzero coefficient.

17.4 Basis

The concepts of span and linear independence are a powerful combination. Any
linearly independent set of vectors that span a space + are called a basis for + .
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Any vector in a space be decomposed over a set of vectors that span the space.
However, every vector in a space has a unique decomposition over an associated

basis. Said another way, for every vector in a space, there are only one set of
coefficients 01 , 02 , . . . , 0= that decompose it over a basis v1 , v2 , . . . , v= .

We can prove that a decomposition over a basis is unique by contradiction.
Suppose there were two sets of coefficients – 01 , 02 , . . . , 0= and 11 , 12 , . . . , 1= – that
decomposed a vector u over a basis v1 , v2 , . . . , v= . Then

u = 01v1 + 02v2 + · · · + 0=v= = 11v1 + 12v2 + · · · + 1=v= .

We can move all the right hand size over to the left and group terms to give

(01 − 11)v1 + (02 − 12)v2 + · · · + (0= − 1=)v= = 0.

Remember that v1 , v2 , . . . , v= is a basis, so the vectorsmust be linearly independent.
By the definition of linear independence, the only way the above equation can be
true is if all the coefficients are zero. This implies that 01 = 11, 02 = 12, and
so on. Clearly this is a violation of our original statement that 01 , 02 , . . . , 0= and
11 , 12 , . . . 1= where different. Therefore, there can only be one way to decompose
any vector onto a basis.

17.4.1 Testing if vectors form a basis

Every basis for a vector space has the same number of vectors. This number is
called the dimension of the vector space. For standard vectors spaces like R= , the Most people think of dimension as the number

of elements in a vector. While the true defini-
tion of dimension is the number of vectors in
the basis, counting elements in a vector works
for spaces like R= . To see why, remember that
the Cartesian unit vectors ê8 form a basis for
R= , but we need = of these vectors, one per
element.

dimension is =. The dimension of R2 is 2, and the dimension of R3 is 3.

Any set of vectors v1 , v2 , . . . , v= is a basis for a space + if and only if:

1. The number of vectors (=) matches the dimension of + .

2. The vectors span + .

3. The vectors are linearly independent.

Proving any two of the above statements automatically implies the third is true.

We get to choose which two of the above three statements to prove when
verifying that v1 , v2 , . . . , v= is a basis. The first statement is usually trivial — does
the number of vectors match the dimension? We almost always choose to prove
the first statement. Proving that vectors are linearly independent is always easier
that proving the vectors span the space. If we collect the vectors v1 , v2 , . . . , v= into
amatrix, the rank of this matrix should be = if the vectors are linearly independent.
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17.4.2 Decomposing onto a basis

How do we decompose a vector onto a basis? Remember that decomposing u over
v1 , v2 , . . . , v= is equivalent to finding a set of coefficients 01 , 02 , . . . , 0= such that

01v1 + 02v2 + · · · + 0=v= = u.

Let’s collect the vectors v1 , v2 , . . . , v= into a matrix V, where each vector v8 is the
8th column in V. Then

(
v1 v2 · · · v=

) ©­­­­«
01
02
...
0=

ª®®®®¬
= Va = u.

We see that finding the coefficients 01 , 02 , . . . , 0= that decompose a vector u onto a
basis v1 , v2 , . . . , v= is equivalent to solving the linear system Va = u.

By formulating vector decomposition as a linear system, we can easily see why
the decomposition of a vector over a basis is unique. In R= , the basis contains =
vectors, each with = elements. So, the matrix V is a square, = × = matrix. Since the
vectors in the basis (and therefore the columns in V) are linearly independent, the
matrix V has full rank. Thus, the solution to Va = u must be unique, implying that SinceV is square and full rank, its inverse (V−1)

must exist. The system has a unique solution
a = V

−1
u.

the decomposition of every vector onto a basis is unique.

17.5 Orthogonal and Orthonormal Vectors

A set of vectors is an orthogonal set if every vector in the set is orthogonal to every
other vector in the set. If every vector in an orthogonal set has been normalized,
we say the vectors form an orthonormal set. Orthogonal and orthonormal sets are
ideal candidates for basis vectors. Since there is no “overlap” among the vectors,
we can easily decompose other vectors onto orthogonal basis vectors.

Imagine you have an orthogonal set of vectors you want to use as a basis. We’ll
assume you have the correct number of vectors (equal to the dimension of your
space) for this to be possible. Based on the above requirements for basis vectors,
we need only to show that these vectors are linearly independent. If so, they are a
basis. For a set of = orthogonal vectors v1 , v2 , . . . , v= , linear independence requires
that

01v1 + 02v2 + · · · + 0=v= = 0

if and only if all the coefficients 01 , 02 , . . . , 0= are equal to zero. Let’s take the dot
product of both sides of the above equation with the vector v1:

(01v1 + 02v2 + · · · + 0=v=) · v1 = 0 · v1.
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On the right hand size, we know that 0 ·v1 = 0 for any vector v1. We also distribute
the dot product on the left hand side to give

01v1 · v1 + 02v2 · v1 + · · · + 0=v= · v1 = 0.

Since all the vectors are orthogonal, v8 ·v1 is zero except when 8 = 1. Canceling out
all the dot products equal to zero shows that

01v1 · v1 = 01 ‖v1‖2 = 0.

We know that ‖v1‖2 ≠ 0, so the only way 01v1 · v1 can equal zero is if 01 is zero.
If we repeat this entire process by taking the dot product with v2 instead of v1,
we will find that 02 = 0. This continues with v3 , . . . , v= until we can say that
01 = 02 = · · · = 0= = 0. Therefore, if the vectors v1 , v2 , . . . , v= are an orthogonal (or
orthonormal) set, they are linearly independent.

17.5.1 Decomposing onto orthonormal vectors

We saw previously that finding the coefficients to decompose a vector onto a basis
requires solving a systemof linear equations. For high-dimensional spaces, solving
such a system can be computationally expensive. Fortunately, decomposing a
vector onto an orthonormal basis is far more efficient.

Theorem. The decomposition of a vector u onto an orthonormal basis v̂1 , v̂2 , . . . , v̂= given
by We use the symbol v̂8 for vectors in an or-

thonormal set to remind us that each vector
has been normalized.

u = 01v̂1 + 02v̂2 + · · · + 0= v̂=

has coefficients

01 = u · v̂1

02 = u · v̂2

...

0= = u · v̂=
Proof. We use a similar strategy as when we proved the linear independence of
orthogonal sets. Let’s start with the formula for vector decomposition

u = 01v̂1 + 02v̂2 + · · · + 0= v̂= .

Taking the dot product of both sides with the vector v̂1 yields (after distributing
the right hand side)

u · v̂1 = 01v̂1 · v̂1 + 02v̂2 · v̂1 + · · · + 0= v̂= · v̂1.
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Because all the vectors v̂1 , v̂2 , . . . , v̂= are orthogonal, the only nonzero term on the
right hand side is 01v̂1 · v̂1, so

u · v̂1 = 01v̂1 · v̂1.

By definition of the dot product, v̂1 · v̂1 = ‖v̂1‖2. Since v̂1 is a unit vector, ‖v̂1‖2 = 1.
Thus 01 = u · v̂1. By repeating the same procedure with v̂2, we find that 02 = u · v̂2,
and so on. �

Decomposing vectors over an orthonormal basis is efficient, requiring only a se-
ries of dotproducts to compute the coefficients. For example,we candecompose the

vector u =
©­«

7
−5
10

ª®¬ over the orthonormal basis
v̂1 =

©­«
1
0
0

ª®¬ , v̂2 =
©­«

0
3/5
4/5

ª®¬ , v̂3 =
©­«

0
4/5
−3/5

ª®¬
.

01 = u · v̂1 =
©­«

7
−5
10

ª®¬ · ©­«
1
0
0

ª®¬ = 7 + 0 + 0 = 7

02 = u · v̂2 =
©­«

7
−5
10

ª®¬ · ©­«
0

3/5
4/5

ª®¬ = 0 − 3 + 8 = 5

03 = u · v̂3 =
©­«

7
−5
10

ª®¬ · ©­«
0

4/5
−3/5

ª®¬ = 0 − 4 − 6 = −10

The decomposition of u is

u = 7 ©­«
1
0
0

ª®¬ + 5 ©­«
0

3/5
4/5

ª®¬ − 10 ©­«
0

4/5
−3/5

ª®¬ = ©­«
7 + 0 + 0
0 + 3 − 8
0 + 4 + 6

ª®¬ = ©­«
7
−5
10

ª®¬ .
17.5.2 Checking an orthonormal set

Given a set of vectors v̂1 , v̂2 , . . . , v̂= , how can we verify that they are orthonormal?
We need to test two things.

1. All vectors are normalized (‖v̂8 ‖ = 1 for all v̂8).

2. All vectors are mutually orthogonal (v̂8 · v̂9 = 0 for all 8 ≠ 9).
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Interestingly, the proof of this method (not
shown here) reveals that if the columns of V

are an orthonormal set, the rows of V are also
an orthonormal set!

The first test is straightforward. The second can be a little cumbersome, as we
need to test all =2 − =/2 pairs of vectors for orthogonality. A simpler, albeit more
sometimes more computationally intensive approach, is to collect the vectors into
a matrix V =

(
v1 v2 · · · v=

)
. Then the set of vectors is orthonormal if an only

if V
−1 = V

T. While inverting a matrix is “expensive,” for small to medium size
vector sets this method avoids the need to iterate over all pairs of vectors to test for
orthonormality.

17.5.3 Projections

Our next goal will be to create orthonormal sets of vectors from sets that are not
orthogonal. Before introducing such an algorithm, we need to develop a geometric
tool — the vector projection. The projection of vector v onto vector u is a vector that
points along u with length equal to the “shadow” of v onto u. Previously we used
the dot product to calculate the magnitude of the projection of v onto u, which was
a scalar equal to ‖v‖ cos�, where � is the angle between v and u. To calculate the
actual projection, wemultiply the magnitude of the projection (‖v‖ cos�) by a unit
vector that points along u. Thus the projection of v onto u is defined as

proj
u
(v) = (‖v‖ cos�)û.

By definition, û = u/‖u‖. Also, we note that v ·u = ‖v‖ ‖u‖ cos�, so the expression
‖u‖ cos� can be written in terms of the dot product (v · u)/‖u‖. We can rewrite
our formula for the projection using only dot products:

proj
u
(v) = (‖v‖ cos�)û = v · u

‖u‖
u

‖u‖ =
v · u
‖u‖2

u =
v · u
u · uu.

u

v

proj
u
(v)

Figure 17.1: The projection is a vector
“shadow” of one vector onto another.

We can use the projection tomake any two vectors orthogonal, as demonstrated
by the following theorem.

Theorem. Given any vectors v and u, the vector v- proj
u
(v) is orthogonal to u.

Proof. If the vector v − proj
u
(v) is orthogonal to u, the dot product between these

vectors must be zero. (
v − proj

u
(v)

)
· u =

(
v − v · u

u · uu

)
· u

= v · u − v · u
u · uu · u

= v · u − v · u
= 0
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�

u

v

v
−

pr
oj

u
(v
)

−proj
u
(v)

Figure 17.2: Subtracting the projection of v

onto u from v makes the vectors orthogonal.

Subtracting the projection of v ontou from the vector v “corrects” v by removing
its overlapwith u. The resulting vector is a vector closest to v that is still orthogonal
to u.

17.5.4 Creating orthonormal basis vectors

We can make any two vectors orthogonal by adjusting one based on its projection
onto the other. We can apply these corrections iteratively tomake any set of linearly
independent vectors v1 , v2 , . . . , v= into an orthonormal basis set û1 , û2 , . . . , û= .

Wemust begin with linearly independent vec-
tors. Otherwise, orthogonalization will turn
one of the vectors into the zero vector, which is
not allowed in a basis.

First, we set
u1 = v1.

We leave this first vector unchanged. All other vectors will be made orthogonal to
it (and each other). Next, we create u2 by making v2 orthogonal to u1:

u2 = v2 − proj
u1
(v2).

Now we have two orthogonal vectors, u1 and u2. We continue by creating u3 from
v3, but this time we must make v3 orthogonal to both u1 and u2:

u3 = v3 − proj
u1
(v3) − proj

u2
(v3).

We continue this process for all = vectors, making each vector v8 orthogonal to
all the newly created orthogonal vectors u1 , . . . , u8−1. This approach is called the
Gram-Schmidt algorithm. Given a set of vectors v1 , v2 , . . . , v= , we create a set of
orthogonal vectors Said more succinctly,

u8 = v8 −
8−1∑
:=1

proj
u:
(v8)u1 = v1

u2 = v2 − proj
u1
(v2)

u3 = v3 − proj
u1
(v3) − proj

u2
(v3)

...

u8 = v8 − proj
u1
(v8) − · · · − proj

u8−1
(v8)

...

u= = v= − proj
u1
(v=) − · · · − proj

u=−1
(v=)

The Gram-Schmidt algorithm products an orthogonal set of vectors. To make the
set orthonormal, we must subsequently normalize each vector.



Chapter 18

Eigenvectors and Eigenvalues

Consider the matrix
A =

(
2 7
−1 −6

)
.

Multiplying A by the vector x1 =

(
−1

1

)
gives an interesting result.

Ax1 =

(
2 7
−1 −6

) (
−1

1

)
=

(
5
−5

)
= −5

(
−1

1

)
= −5x1.

Similarly, with x2 =

(
−7

1

)
:

Ax2 =

(
2 7
−1 −6

) (
−7

1

)
=

(
−7

1

)
= x2.

In both cases, multiplication by A returned a scalar multiple of the vector (-5 for x1

and 1 for x2). This is not a property of solely the matrix A, since the vector x3 =

(
1
1

)
is not transformed by a single scalar.

Ax3 =

(
2 7
−1 −6

) (
1
1

)
=

(
9
5

)
≠ �x2

Similarly, the results we are seeing are not properties of the vectors x1 and x2,
since they do not become scalar multiples of themselves when multiplied by other

156
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matrices.
B =

(
2 1
−3 0

)
Bx1 =

(
2 1
−3 0

) (
−1

1

)
=

(
−1

3

)
≠ �x1

Bx2 =

(
2 1
−3 0

) (
−7

1

)
=

(
−13

21

)
≠ �x2

The phenomena we’re observing is a result of the paring between the matrix A

and the vectors x1 and x2. In general, we see that multiplying a vector by a matrix
returns a scalar multiple of the vector, or

Ax = �x.

Any vector x that obeys the above relationship is called an eigenvector of the matrix
A. The scalar � is called the eigenvalue associated with the eigenvector x. The Eigenvectors were originally called characteris-

tic vectors, as they describe the character of the
matrix. German mathematicians dropped this
nomenclature in favor of the German prefix
“eigen-”, which mean “own”. An eigenvector
can be viewed as one of a matrix’s “own” vec-
tors since it is not rotated when transformed
by multiplication.

vector x is an eigenvector of the matrix A; it is not generally an eigenvector of other
matrices.

In the example above, thematrixA =

(
2 7
−1 −6

)
has two eigenvectors, v1 =

(
−1

1

)
with eigenvalue �1 = −5, and v2 =

(
−7

1

)
with eigenvector �2 = 1.

18.1 Properties of Eigenvectors and Eigenvalues

Only square matrices have eigenvectors and eigenvalues. To understand why the
matrix must be square, remember that a non-square matrix with < rows and
= columns transforms an =-dimensional vectors into an <-dimensional vector.
Clearly, the <-dimensional output cannot be the =-dimensional input multiplied
by a scalar!

An = by = matrix of real numbers can have up to = distinct eigenvectors. Each
eigenvector is associated with an eigenvalue, although the eigenvalues can be
duplicated. Said another way, two eigenvectors v1 and v2 of a matrix will never be
the same, but the corresponding eigenvalues �1 and �2 can be identical.

Although the number of eigenvectors may vary, all eigenvectors for a matrix
are linearly independent. Thus, if an = by = matrix has = eigenvectors, these
vectors can be used as a basis (called an eigenbasis). If an eigenbasis exists for An = by = matrix with = eigenvectors and =

distinct eigenvalues is called a perfect matrix.
As the name implies, perfect matrices are great
to find, but somewhat uncommon.

a matrix, decomposing vectors over this basis simplifies the process of matrix
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multiplication. To illustrate, imagine we decompose the vector x over a set of
eigenvectors v1 , . . . , v= . Decomposing x means we can find coefficients 01 , . . . , 0=
such that

x = 01v1 + · · · + 0=v= .

Now let’s compute the product Ax. We multiply both sides of the decomposition
by A.

Ax = A (01v1 + · · · + 0=v=)
We distribute the matrix A into the sum on the right hand side and note that the
constants 08 can be moved in front of the matrix multiplication.

Ax = 01Av1 + · · · + 0=Av=

Remember that v1 , . . . , v= are eigenvectors of A, so Av8 = �8v8 . We can simplify
the previous expression to

Ax = 01�1v1 + · · · + 0=�=v= .

We don’t need to perform the multiplication at all! Instead, we can scale each
eigenvector by the eigenvalue. Multiplying again by the matrix A multiplies each
eigenvector by its eigenvalue. We use the notation A

2 to denote AA, A
3 for

AAA, and A
: for the product of : matrices A.

A
2
x = 01�

2
1v1 + · · · + 0=�2

=v=

A
:
x = 01�

:
1v1 + · · · + 0=�:=v=

18.2 Computing Eigenvectors and Eigenvalues

We can use the relationship between matrix multiplication and eigenvalues to find
eigenvectors for anymatrix. Our computational approach is based on the following
theorem.

Theorem. Given any (random) vector b, repeated multiplication by the matrix A will
converge to the eigenvector of A with the largest magnitude eigenvalue – provided the
largest eigenvalue is unique. Said another way,

lim
:→∞

A
:
b = vmax.

Proof. We know that the product Ax can be expressed as a linear combination of
the eigenvectors and eigenvalues of A, i.e. Ax = 01�1v1 + · · · + 0=�=v= . Thus

lim
:→∞

Ab = lim
:→∞

(
01�

:
1v1 + · · · + 0=�:=v=

)
.
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As : increases, the values �:
8
grow very large. However, the �8 to not grow at the

same rate. The largest eigenvalue will grow the fastest. At very large values of :,
the term associated with the largest eigenvalue will dominate the entire sum, so
the result will point in only the direction of the associated eigenvector. Note that
convergence to a single eigenvector requires that the largest eigenvalue be distinct.
If two eigenvectors have the same (largest) eigenvalue, both terms in the above
sumwould “blow up” at the same rate. Repeated multiplications by A would then
converge to the sum of the two associated eigenvectors. �

The above theorem allows us to find the eigenvector paired with the largest
eigenvalue. While the direction of the eigenvector doesn’t change, its magnitude
grows as the number of multiplication of A increases. If convergence is slow,
we might need to work with numbers before finding the eigenvector. To avoid
numerical difficulties, we renormalize the vector after every multiplication by A.
This algorithm is called the Power Iteration method, which proceeds as follows:

1. Choose a randomvectorb0. For fastest convergence, it helps to choose avector
close to vmax if possible. Normalize this vector to product b̂0 = b0/‖b0‖.

2. Compute vector b1 = Ab̂0. Normalize this vector to give b̂1 = b1/‖b1‖.

3. Repeat step 2 to product b̂2 , b̂3 , . . . , b̂: . Stop when all entries of b̂: do not
change from the entries in b̂:−1. The vector b̂: is an eigenvector of A.

The eigenvector associated with the largest
magnitude eigenvalue is called the leading
eigenvector.

Now that we have the eigenvector vmax, how do we find the associated eigenvalue
�max? We know that vmax is an eigenvector of A, to Avmax = �maxvmax. The 8th
element in Avmax should be equal to �max times the 8th element in vmax. However,
since we only found a numerical approximation to the vmax, the estimate for �max
from each element in vmax might differ slightly. To “smooth out" these variations,
compute the eigenvalue using the Rayleigh quotient: To see why the Raleigh quotient works, con-

sider an eigenvector v for matrix A with asso-
ciated eigenvalue �. Then

v ·Av

v · v =
v · (�v)

v · v = �
v · v
v · v = �.

�max =
vmax ·Avmax
vmax · vmax

.

The dot product in the Rayleigh quotient averages out all of the small discrep-
ancies between our estimate vmax and the true largest eigenvector. The Rayleigh
quotient provides a numerically stable estimate of the largest eigenvalue.

Now that we’ve found the first eigenvector, how do we find the others? If we
start the Power Iteration method over again using the matrix (A − �maxI) instead
of A, the algorithm will converge to the eigenvector associated with the second
largest eigenvalue. We can subtract this eigenvalue from A and repeat to find
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the third eigenvector, and so on. Proving that Power Iteration is able to find
subsequent eigenvectors is beyond the scope of this book. However, as we’ll see
later, finding only the first eigenvector is sufficient for addressing a number of
interesting problems.

18.2.1 Eigenvalues and Eigenvectors in Matlab

The Matlab function eig computes eigenvalues and eigenvectors. The statement
[V,L] = eig(A) involving an = by = matrix A returns two = by = matrices:

• Each column of the matrix V is an eigenvector A.

• The matrix L is a diagonal matrix. The 8th entry on the diagonal is the
eigenvalue associated with the 8th column in V.

Remember that any vector that points in the same direction as an eigenvector
of a matrix is also an eigenvector of that matrix. If the eigenvectors returned by
computational systems like Matlab are not what you expect, remember that they
may be normalized or scaled – but still point along the same direction.

18.3 Applications

Eigenvalue and eigenvectors can be used to solve a number of interesting engineer-
ing and data science problems.

18.3.1 Solving Systems of ODEs

Consider the linear system of ODEs

3G1
3C

= G1 + 2G2

3G2
3C

= 3G1 + 2G2

with initial conditions G1(0) = 0 and G2(0) = −4. We can write this system using
vectors and matrices as

3x

3C
= Ax, x(0) = x0

where for the example above

x =

(
G1
G2

)
, A =

(
1 2
3 2

)
, x0 =

(
0
−4

)
.
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If we know the eigenvectors v1 , . . . , v= and eigenvalues �1 , . . . ,�= for the matrix
A, we can compute the solution as This solution requires the matrix A be perfect

and therefore have a complete set of eigenvec-
tors.

x(C) = 21v14
�1C + 22v24

�2C + · · · + 2=v=4
�= C .

The scalars 21 , . . . , 2= are the constants of integration. To find these values, notice The function 5 (C) = 4�C is an eigenfunction of
the derivative operator, i.e.

3

3C
5 (C) = �4�C = � 5 (C)

. The solution of a system of linear ODEs is
the product of the eigenvectors of A and the
eigenfunctions of 3x

3C
.

what happens to our solution at time C = 0:

x(0) = x0 = 21v1 + 22v2 + · · · + 2=v= .

At C = 0, the right hand side is a decomposition of the initial conditions x0. If we
collect the eigenvectors as columns of a matrix V = (v1v2 . . . v=), we can find the
constants 21 , . . . , 2= by solving the linear system

V

©­­«
21
...

2=

ª®®¬ = x0.

Returning to our original example, the matrix

A =

(
1 2
3 2

)
has eigenvalue/eigenvector pairs

�1 = −1, v1 =

(
−1

1

)
and �2 = 4, v2 =

(
2
3

)
.

The integration constants 21 and 22 are defined by the system Vc = x0, which for
this example is (

−1 2
1 3

) (
21
22

)
=

(
0
−4

)
.

Solving the above equations reveals 21 = −8/5 and 22 = −4/5. The final solution to
this systems of ODEs is

x(C) = −8
5

(
−1

1

)
4−C − 4

5

(
2
3

)
44C .
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18.3.2 Stability of Linear ODEs

The eigenvalues of A are sufficient to tell if the system 3x

3C = Ax is stable. For a
system of linear ODEs to be stable, all eigenvalues of A must be nonpositive. If
the eigenvalues are all negative, each term 4�8 C goes to zero at long times, so all
variables in the system to go zero. If any of the eigenvalues are zero, the system is
still stable (provided all other eigenvalues are negative), but the systemwill go to a
constant value 28v8 , where v8 is the eigenvector associatedwith the zero eigenvalue.

18.3.3 Positive Definite Matrices

A symmetric matrix A is positive definite (p.d.) if x
T
Ax > 0 for all nonzero vectors

x. If a matrix A satisfies the slightly relaxed requirement that x
T
Ax ≥ 0 for all Remember that a matrix A is symmetric if A =

A
T.nonzero x, we say that A is positive semi-definite (p.s.d.).

Knowing that a matrix is positive (semi-)definite is useful for quadratic pro-
gramming problems like the Support Vector Machine classifier. The quadratic
function 5 (x) = x

T
Qx is convex if and only if the matrix Q is positive semi-definite. If Q is positive definite (rather than just posi-

tive semi-definite) then x
T

Qx is strictly convex.For optimization problems like quadratic programs, the convexity of the objective
function has enormous implications. Convex quadratic programs must only have
global optima, making them easy to solve using numerical algorithms.

Determining if a matrix is positive (semi-)definite can be difficult unless we
use eigenvalues. Any matrix with only positive eigenvalues is positive definite,
and any matrix with only nonnegative eigenvalues is positive semi-definite. For
example, consider the 2 × 2 identity matrix

I =

(
1 0
0 1

)
.

The product x
T
Ix is (

G1 G2
) (

1 0
0 1

) (
G1
G2

)
= G2

1 + G2
2 .

Since G2
1 + G2

2 is greater than zero for all nonzero inputs G1 and G2, the matrix I is
positive definite and all its eigenvalues should be positive. Indeed, the eigenvalues
for the identity matrix are �1 = �2 = 1.

As another example, consider the matrix

A =

(
1 −2
−2 1

)
.

Theproduct x
T
Ax = G2

1−4G1G2+G2
2, which is not always positive. When G1 = G2 = 1,

we see that G2
1 − 4G1G2 + G2

2 = −2. We know that A is not positive definite (or even
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positive semi-definite), so A should have at least one negative eigenvalue. As
expected, the eigenvalues for A are �1 = 3 and �2 = −1.

18.3.4 Network Centrality

Networks are represented by collections of nodes connected by edges. When ana-
lyzing a network, it is common to ask which node occupies the most important
position in the network. For example, which airport would cause the most prob-
lems if closed due to weather? In biological networks, the importance or centrality
of an enzyme is used to prioritize drug targets.

We can quantify the centrality of each node in a network using random walks.
We start by choosing a randomnode in the network. Thenwe randomly choose one
of the edges connected to the node and travel to a new node. This process repeats
again and again as we randomly traverse nodes and edges. The centrality of each
node is proportional to the number of times we visit the node during the random
walk. In the airport analogy, randomly traveling to cities across the country means
you will frequently visit major hub airports.

Measuring centrality by random walks is easy to understand but impractical
for large networks. It could take millions of steps to repeatedly reach all the nodes
in networks with only a few thousand of nodes. In practice, we use eigenvectors
to calculate centrality for networks. We begin by constructing an adjacency matrix
for the network. The adjacency matrix encodes the connections (edges) between
the nodes. The adjacency matrix is square with rows and columns corresponding
to nodes in the network. The (8,9) entry in the network is set to 1 if there is an
edge connecting node 8 with node 9. Otherwise, the entries are zero. Note that we
only consider direct connections. If node 1 is connected to node 2 and node 2 is
connected to node 3, we do not connect nodes 1 and 3 unless there is a direct edge
between them. Also, no node is connected to itself, so the diagonal elements are
always zero.

Consider the four node network shown in Figure 18.1. The four node network
has the following adjacency matrix.

©­­­«
� � � �

� 0 1 1 0
� 1 0 1 1
� 1 1 0 0
� 0 1 0 0

ª®®®¬

A

B

C D

Figure 18.1: Sample network with four nodes
and four edges.

To identify the most central node in the network, we find the eigenvector that
corresponds to the largest eigenvalue (�max). For the above adjacency matrix,
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�max ≈ 2.2, and the associated eigenvector is

vmax =
©­­­«
0.52
0.61
0.52
0.28

ª®®®¬ .
The entries in the eigenvector vmax are called the eigencentrality scores. The largest
entry corresponds to the most central node, and the smallest entry is associated
with the least central node. We see that node � (entry 2) is most central in Figure
18.1 and node � (entry 4) is least central. Centrality requires only the leading eigenvec-

tor of a network’s adjacencymatrix. Power Iter-
ation (section 18.2) can find the leading eigen-
vector efficiently for large networks.

In simple networks like Figure 18.1, the most central node also has the most
direct connections. This is not always the case. Eigencentrality considers not
only the number of connections but also their importance. Each edge is weighted
by the centrality of the nodes it connect. Connections from more central nodes
are more important, just as flights between major hub cities usually have the
highest passenger volumes. Eigencentrality has numerous applications including
web searching. Google uses a modified version of centrality (called PageRank) to
determine which results should be displayed first to users.

18.4 Geometric Interpretation of Eigenvalues

Consider a matrix A ∈ R2 with eigenvalues �1 and �2 and corresponding eigen-
vectors v1 and v2. Let’s take a vector x and decompose it over the eigenvectors.

x = 01v1 + 02v2

We can represent the vector x by plotting it; however, instead of using the normal
Cartesian unit vectors as axes, we will use the eigenvectors. The values of x along
the “eigenaxes" are 01 and 02. What happens when we multiply x and A?

Ax = A(01v1 + 02v2) = �101v1 + �202v2

Visually, multiplying by A scales the values along the eigenvector axes. The scaling
factor along each axis is the corresponding eigenvalue. To quantify the overall effect
of multiplying by the matrix A, we can compare the areas swept out by the vector x

before and after multiplication. The area is simply the product of the values along
each axis, so the ratio becomes

area(Ax)
area(x) =

�101�202
0102

= �1�2.
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We can repeat the same calculation in three dimensions by looking at the ratio of
the volume before and after multiplying by the matrix A.

volume(Ax)
volume(x) =

�101�202�303
010203

= �1�2�3

In general, the product of the eigenvalues of a matrix describe to overall effect of
multiplying a vector by the matrix. The product of the eigenvalues of a matrix A

is called the determinant of A, or det(A).

det(A) = �1�2 · · ·�=

If the determinant of a matrix is large, multiplying a vector by the matrix enlarges
the volume swept out by the vector. If the determinant is small, the volume
contracts. Remember that the volume we’re discussing

here is the volume when a vector is plotted
using the matrix’s eigenvectors as axes.

18.5 Properties of the Determinant

The determinant is a powerful property of a matrix. Determinants can be easily
calculated for a matrix and contain useful information about the matrix. In Matlab, the function det calculates the de-

terminant of a matrix.Let’s say a vector y = Ax. We know the determinant of the matrix A is the ratio
of the volumes of x and y.

det(A) = volume(Ax)
volume(x) =

volume(y)
volume(x)

If the inverse of A exists, we know that x = A
−1

y. Thus, the determinant of the
inverse matrix A

−1 is

det(A−1) = volume(A−1
y)

volume(y) =
volume(x)
volume(y) =

1
det(A) .

The determinant of A
−1 is the inverse of the determinant of A. If the determinant

of a matrix is zero, this property indicates there is a problem with the inverse of
the matrix.

det(A) = 0⇒ det(A−1) = 1
det(A) =

1
0 → undefined

Although we won’t prove it in this course, a matrix has an inverse if and only if

the determinant of the matrix is nonzero. The following statements are, in fact,
equivalent for a square matrix A:
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• A can be transformed into the identity matrix by elementary row operations.

• The system Ax = y is solvable and has a unique solution.

• A is full rank.

• A
−1 exists.

• det(A) ≠ 0.

A matrix with a determinant equal to zero has a geometric interpretation.
Remember that the determinant is the product of the eigenvalues. It is the product
of the scaling factors of the matrix along each eigenvector. If one of the eigenvalues
is zero, we are missing information about how the matrix scales along at least one
eigenvector. Our knowledge of the transformation is incomplete, which is why we
cannot find a unique solution for the corresponding linear system.

Using the determinant we can concisely state our last field axiom. Recall that
for scalars we required a multiplicative inverse exist for any nonzero member of
the field, i.e.

For all scalars 0 ≠ 0 there exists 0−1 such that 00−1 = 1.

For vector spaces, we have the following:

For all square matrices A where det(A) ≠ 0,
there exists A

−1 such that AA
−1 = I = A

−1
A.



Chapter 19

Matrix Decompositions

19.1 Eigendecomposition

Let’s discuss a square, = × = matrix A. Provided A is not defective, it has =
linearly independent eigenvectors which we will call v1 , . . . , v= . The eigenvectors
are linearly independent and therefore form a basis for R= (an eigenbasis). We said
in the last chapter that any vector x can be decomposed onto the eigenbasis by
finding coefficients 01 , . . . , 0= such that

x = 01v1 + 02v2 + · · · + 0=v= .

Multiplying the vector x by the matrix A is equivalent to scaling each term in the
decomposition by the corresponding eigenvalue (�8).

Ax = 01�1v1 + 02�2v2 + · · · + 0=�=v=

We can think of matrix multiplication as a transformation with three steps.

1. Decompose the input vector onto the eigenbasis of the matrix.

2. Scale each term in the decomposition by the appropriate eigenvalue.

3. Reassemble, or “un-decompose” the output vector.

Each of these steps can be represented by a matrix operation. First, we collect the
= eigenvalue into a matrix V.

V = (v1 v2 · · · v=)

167



168

Each column in the matrix V is an eigenvector of the matrix A. To decompose the
vector x onto the columns of V we find the coefficients 01 , . . . , 0= by solving the
linear system

Va = x

where a is a vector holding the coefficients 01 , . . . , 0= . The matrix V is square and
has linearly independent columns (the eigenvectors of A), so its inverse exists. The
coefficients for decomposing the vector x onto the eigenbasis of the matrix A are

a = V
−1

x.

If the inverse matrix V
−1 decomposes a vector into a set of coefficients a, then mul-

tiplying the coefficients vector a by the original matrix must reassemble the vector
x. Looking back at the three steps we defined above, we can use multiplication by In other words, if V

−1 decomposes a vector,
(V−1)−1 = V must undo the decomposition.

V
−1 to complete step 1 and multiply by V to perform step 3. For step 2, we need

to scale the individual coefficients by the appropriate eigenvalues. We define a
scaling matrix Λ as a diagonal matrix of the eigenvalues: We use the uppercase Greek lambda (Λ) to de-

note the matrix of eigenvalues �8 (lowercase
lambda).

Λ =

©­­­­«
�1 0 · · · 0
0 �2 · · · 0
...

...
. . .

...
0 0 · · · �=

ª®®®®¬
.

Notice that

Λa =

©­­­­«
�101
�202
...

�=0=

ª®®®®¬
so the matrix Λ scales the 8th entry of the input vector by the 8th eigenvalue.

We nowhavematrix operations for decomposing onto an eigenbasis (V−1), scal-
ing by eigenvalues (Λ), and reassembling the output vector (V). Putting everything
together, we see thatmatrixmultiplication canbe expressed as an eigendecomposition
by Eigendecomposition is the last timewewill use

the prefix “eigen-”. Feel free to use it on other
everyday words to appear smarter.

Ax = VΛV
−1

x.

Equivalently, we can say that the matrix A itself can be as the product of three
matrices (A = VΛV

−1) if A has a complete set of eigenvectors. There are two ways
to interpret the dependence on a complete set of eigenvectors. Viewed technically,
the matrix V can only be inverted if it is full rank, so V

−1 does not exist if one or
more eigenvectors is missing. More intuitively, the eigendecomposition defines



169

a unique mapping between the input and output vectors. Uniqueness requires a
basis, since a vector decomposition is only unique if the set of vectors form a basis.
If the matrix A is defective, its eigenvectors do not form an eigenbasis and there
cannot be a unique mapping between inputs and outputs.

19.2 Singular Value Decomposition

The eigendecomposition is limited to square matrices with a complete set of eigen-
vectors. However, the idea that matrices can be factored into three operations
(decomposition, scaling, and reassembly) generalizes to all matrices, even non-
square matrices. The generalized equivalent of the eigendecomposition is called
the Singular Value Decomposition, or (SVD).

Singular Value Decomposition. Any < × = matrix A can be factored into the product
of three matrices

A = UΣV
T

where

• U is an orthogonal < × < matrix.

• Σ is a diagonal < × = matrix with nonzero entries.

• V is an orthogonal = × = matrix.

The squarematricesU andV are orthogonal, i.e. their columns formanorthonor-
mal set of basis vectors. As we discussed previously, the inverse of an orthogonal If the entries in A were complex numbers, the

matrices U and V would be unitary. The in-
verse of a unitary matrix is the complex conju-
gate of the matrix transpose.

matrix is simply its transpose, so U
−1 = U

T and V
−1 = V

T. The V
T term in the

decomposition has the same role as the V
−1 matrix in an eigendecomposition —

projection of the input vector onto a new basis. The matrix U in SVD reassembles
the output vector analogous to the vector V in an eigendecomposition.

Thematrix Σ is diagonal but not necessarily square. It has the same dimensions
as the original matrix A. For a 3 × 5 matrix, the Σ has the form

Σ =
©­«
�1 0 0 0 0
0 �2 0 0 0
0 0 �3 0 0

ª®¬ .
If the matrix A was 5 × 3, we would have

Σ =

©­­­­«
�1 0 0
0 �2 0
0 0 �3
0 0 0
0 0 0

ª®®®®¬
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The elements along the diagonal of Σ are called singular values. If A is an < × =
matrix, themaximumnumber of nonzero singular values ismin{<, =}. The are the
analogues of eigenvalues for non-square matrices. However, the singular values
for a square matrix are not equal to the eigenvalues of the same matrix. Singular
values are always nonnegative. If we arrange Σ such that the singular values are
in descending order, the SVD of a matrix is unique.

The columns inU andV are called the left and right singular vectors, respectively.
Just as there is a relationship between eigenvalues and eigenvectors, the columns
in U and V are connected by the singular values in Σ. If A = UΣV

T, then

Av8 = �8u8

and
A

T
u8 = �8v8

where v8 is 8th right singular vector (the 8th column in V); u8 is the 8th left singular
vector (the 8th column in U); and �8 is the 8th singular value (the 8th nonzero on
the diagonal of Σ).

19.3 Applications of the SVD

19.3.1 Rank of a matrix

The rank of a matrix A is equal to the number of nonzero singular values (the
number of nonzero values along the diagonal of Σ). This is true for both square
and nonsquare matrices. Notice that the way we defined the diagonal matrix Σ

implies that the number of singular values must be at most min{<, =} for an < × =
matrix. This requirement agrees with our knowledge that rank(A) ≤ min{<, =}.

19.3.2 The matrix pseudoinverse

Our definition of a matrix inverse applies only to square matrices. For nonsquare
matrices we can use the SVD to construct a pseudoinverse. We represent the
pseudoinverse of a matrix A as A

+. We simply reverse and invert the factorization
of A, i.e.

A
+ = (VT)−1

Σ
+

U
−1

We can simplify this expression with knowledge that V and U are orthogonal, so
(VT)−1 = (VT)T = V and U

−1 = U
T. Thus

A
+ = VΣ

+
U

T.
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The matrix Σ
+ is the pseudoinverse of the diagonal matrix Σ. This is simply the

transpose of Σ where each entry on the diagonal is replaced by its multiplicative
inverse. For example, a 3 × 5 matrix Σ:

Σ =
©­«
�1 0 0 0 0
0 �2 0 0 0
0 0 �3 0 0

ª®¬
the pseudoinverse Σ

+ is

Σ
+ =

©­­­­«
1/�1 0 0

0 1/�2 0
0 0 1/�3
0 0 0
0 0 0

ª®®®®¬
.



Chapter 20

Low Rank Approximations

The previous chapter introduced the Singular Value Decomposition (SVD) and
showed how every matrix can be decomposed into the product of three matrices.
Any < × = matrix A is equal to UΣV

T where

1. An < × < orthogonal matrix U that forms a basis for the output dimension.

2. An < × = diagonal matrix Σ that holds the singular values.

3. An = × = orthogonal matrix V that forms a basis for the input dimension.

We can use the SVD to help us understand how multiplication transforms
vectors between dimensions. Assume that a matrix A has dimensions 3 × 5. If
y = Ax, the input vector x is 5-dimensional and theoutput vectory is 3-dimensional.
The input vector x lost two dimensions somewhere in the matrix A. Where did
they go?

Let’s look at the SVD of the matrix A. We’re not interested in the particular
numbers in the matrices—just the overall structure. Visually, We’re showing V

T in this diagram, so the col-
umn vectors in V appear as row vectors in V

T.

A = ︸︷︷︸
U

×︸ ︷︷ ︸
Σ

×︸ ︷︷ ︸
V

T

.

There’s lots to analyze here. First, only the colored entries contain nonzero num-
bers. The white squares in Σ and zero since the singular values only appear along
the diagonal. Also note that the number of singular values never exceeds the
smaller dimension of the original matrix. Since A is a 3 × 5 matrix, there can be no
more than three nonzero singular values.

172
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The columns of zeros in the matrix Σ will “zero-out” the last two rows (green
and yellow) of the matrix V

T during multiplication. Thus the green and yellow
rows do not contribute at all to the output vector. This is how the matrix A moves
from five to three dimensions:

1. The input vector is decomposed onto the 5-dimensional basis formed by the
columns in V. Normally this decomposition requires multiplying the input
vector by the inverseV

−1; however, sinceV is an orthogonalmatrix, its inverse
equals its transpose.

2. Multiplying by Σ scales the first three dimensions by the corresponding
singular values. The last two dimensions are dropped.

3. The surviving three dimensions are projected into the output space by the
basis vectors in the matrix U.

Since the green and yellow rows in V
T are going to be zeroed-out, let’s change

their color to white to match the zeros in the matrix Σ. Then they’ll be easier to
ignore.

A = ︸︷︷︸
U

×︸ ︷︷ ︸
Σ

×︸ ︷︷ ︸
V

T

The second thing to note is that the blue entries in all three matrices are only
multiplied by other blue entries. The same is true for the red and orange entries.
You can follow through the multiplication and separate it into three parts, one
blue, one red, and one orange.

A =

(
× ×

)
+

(
× ×

)
+

(
× ×

)
= + +

So the matrix A is actually the sum of three separate matrices—one blue, one red,
and one orange. The blue column in the matrix U is the first left singular vector
(u1). The blue square in Σ is the first singular value (�1). The blue row in the
matrix V

T is actually a column vector in the untransposed matrix V and is the first
right singular vector (v1).

Let’s write this all out again using mathematical symbols instead of boxes for
the matrices. We’ll retain the same color scheme as a guide and drop rows 4–5 in
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V
T since these rows are zeroed-out in the final product.

A =
(
u1 u2 u3

)︸           ︷︷           ︸
U

©­«
�1

�2
�3

ª®¬︸                 ︷︷                 ︸
Σ

©­­­­­«
v

T
1

v
T
2

v
T
3

ª®®®®®¬︸︷︷︸
V

T

= �1u1v
T
1 + �2u2v

T
2 + �3u3v

T
3

The SVDdecomposes anymatrix into aweighted sumofmatrices created by the
pairs of singular vectors u8v

T
8
. The weights in this sum are the singular values �8 .

These scalars define how much each pair of singular vectors (u8 and v8) contribute
to the matrix. Some pairs have large singular values and therefore contribute a lot.
Pairs with small singular values contribute very little. As an extreme, any pair of
singular vectors associated with a zero singular value does not contribute at all.

The singular values in the matrix Σ are by convention ordered by decreasing
magnitude (�1 ≥ �2 ≥ · · · ≥ �:). Since the singular vectors are the weights Remember that singular values are always

nonnegative.for the singular vectors, the singular vectors are similarly ordered by decreasing
importance. The first pair of singular vectors u1, v1 has the largest influence on
the overall matrix, followed by the second pair u2, v2, and so on. Some pairs of
singular vectors are associated with such a small singular value that they can be
removed with little effect, as demonstrated by the following numerical example.

In this example, we used the SVD to decompose a 4×3 matrix. Since the output
dimension (4) is larger than the input dimension (3), the matrix U contains “extra”
columns that are zeroed-out by the matrix Σ.

A =

©­­­«
0.67 0.99 0.61
0.70 0.13 0.81
0.12 0.18 0.11
0.24 0.77 0.12

ª®®®¬
=

−0.75 −0.23 0.62 0.03
−0.51 0.79 −0.33 0.09
−0.14 −0.04 −0.15 −0.98
−0.39 −0.57 −0.70 0.18

©­­«
ª®®¬︸                                ︷︷                                ︸

U

1.76 0 0
0 0.75 0
0 0 0.01
0 0 0

©­­«
ª®®¬︸                 ︷︷                 ︸

Σ

−0.55 0.33 −0.76
−0.64 −0.75 0.13
−0.53 0.57 0.63

( )
︸                       ︷︷                       ︸

V
T
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Notice how small the third singular value is (�3 = 0.01) compared to the other
two singular values (�1 = 1.76 and �2 = 0.75). The singular vectors associated with
�3 (in orange) contribute little to the overall matrix A because they are multiplied
by such a small singular value. We could probably change the singular value to
zero and not change the matrix much. Let’s delete �3 and call the resulting matrix
A2 since it contains only two of the three original singular values. Notice that we call the inner matrix Σ2 since

we’ve modified it to only have two singular
values.

A2 =

−0.75 −0.23 0.62 0.03
−0.51 0.79 −0.33 0.09
−0.14 −0.04 −0.15 −0.98
−0.39 −0.57 −0.70 0.18

©­­«
ª®®¬︸                                ︷︷                                ︸

U

1.76 0 0
0 0.75 0
0 0 0
0 0 0

©­­«
ª®®¬︸                 ︷︷                 ︸

Σ2

−0.55 0.33 −0.76
−0.64 −0.75 0.13
−0.53 0.57 0.63

( )
︸                       ︷︷                       ︸

V
T

=

©­­­«
0.67 0.99 0.61
0.70 0.13 0.81
0.12 0.18 0.11
0.24 0.77 0.12

ª®®®¬
Deleting the small singular value �3 had almost no effect on the matrix. The
matrices A and A2 appear identical due to rounding, but there are some small
differences. To emphasize the connection between the singular values and the
corresponding singular vectors, we can also zero-out the orange values in U and V

since they are onlymultiplied by the singular value �3 that we’ve set to zero. While
we’re at it, we can zero-out the fourth column in U which is never used because
there are only three singular values for the 4 × 3 matrix.

A2 =

−0.75 −0.23 0 0
−0.51 0.79 0 0
−0.14 −0.04 0 0
−0.39 −0.57 0 0

©­­«
ª®®¬︸                                ︷︷                                ︸

U2

1.76 0 0
0 0.75 0
0 0 0
0 0 0

©­­«
ª®®¬︸                 ︷︷                 ︸

Σ2

−0.55 0.33 −0.76
−0.64 −0.75 0.13

0 0 0

( )
︸                       ︷︷                       ︸

V
T
2

=

©­­­«
0.67 0.99 0.61
0.70 0.13 0.81
0.12 0.18 0.11
0.24 0.77 0.12

ª®®®¬
Matrices like A2 are called low rank approximations to the original matrix A. In

section 19.3 we said that the rank of a matrix is equal to the number of nonzero
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singular values in its SVD. Zeroing-out a singular value creates a new matrix with
a lower rank. In the example above, the matrix A2 is a “rank 2” approximation to
the matrix A.

We always delete the smallest singular values when creating a low rank ap-
proximation. This ensures the smallest loss of information when reconstructing
the original matrix. In the matrix A from above, the third singular value was so
small that its deletion was almost unnoticeable.

How small is small for a singular value? It all depends on the size of the other
singular values. We judge the size of a singular value relative to the others. For the
matrix A, the sum of the singular values was 1.76 + 0.75 + 0.01 = 2.52, so the third
singular value represented only 0.01/2.52 = 0.4% of the information in the matrix.
We can use singular values to assess the information distribution of a matrix since
the singular vectors have been normalized. Only the singular values determine
the relative contribution of the products �8u8vT

8
that make up the original matrix.

20.1 Image Compression

A low rank approximation for amatrix contains several rows and columns of zeros.
If a singular value in the matrix Σ is zero, the corresponding column in U and the
corresponding row in V

T can also be set to zero as shown in the previous section.
We can go a step further and remove the columns of zeros entirely. The number
of rows in U and the number of columns in V

T determine the dimensions of the
product UΣV

T, so deleting a column from U or a row from V
T will not change the

dimensions of the product. A low rank approximation requires less memory to
store on a computer and can be used as a form of image compression.

Before we see an example of image compression, we should mention that there
are two types of compression. Low rank approximations are lossy compression
schemes since they destroy information that can’t be recovered. However, re-
moving small singular values deletes only a small amount information, so the
compressed image retains most of its features. Lossless compression retains all the
information in an image by finding ways to store the image more efficiently. For
example, a lossless compressor might replace frequent sequences of bits with an
abbreviation to reduce the image size. We don’t talk about lossless compression in
this book, but many of these algorithms also use linear algebra.

A digital image can be represented as a matrix of pixels. For simplicity we’ll
discuss greyscale (black and white) images where each pixel is a number between
zero (black) and one (white). Color images have either three (RGB) or four (CMYK)
entries for each pixel to describe the color intensities. Figure 20.1: A 512×384 pixel, grayscale image

of two adorable Scottie dogs. The upper dog
is Duncan. The lower dog is Rocky. They are
best friends.
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Figure 20.1 is an image of two Scottish Terriers looking out a window. The
image is 512 pixels high and 384 pixels wide, creating a 512× 384 matrix. The rank
of this matrix can be no larger than min{512, 384} = 384, so the SVD of the image
matrix will have at most 384 nonzero singular values.

Let’s compress this image using a low rank approximation with the following
steps on the image matrix A.

1. We decompose the matrix A using the SVD: A = UΣV
T.

2. We keep only the : largest singular values remove the zeroed-out columns
in U and V to create smaller matrices U: , Σ: , and V: .

3. We multiply these matrices together to form a low rank approximation for
the original image A: = U:Σ:V

T
:
.

Figure 20.2 shows six low rank approximations for the image in Figure 20.1. The
first image is actually a full rank reconstruction since it uses all 384 singular values.
The second image uses the largest 96 singular values, so it contains only a fraction
of the information in the first image; however, the low rank approximation is almost
indistinguishable from the full image. It is only at very low ranks where the image
becomes blurry, although the dogs are still recognizable with only 12 singular
values.

There are two reasonswhywe can compress an imagewhile retaining its overall
features. The first is that most of the information in an image comes from a few
singular vectors. The distribution of information is skewed as shown in Figure 20.3.
The smallest singular vectors give diminishing returns and contribute little to the
overall information content of a matrix.

The second reason why we can compress images is that information is dis-
tributed. Each pair of singular vectors holds information about every pixel, which
is expected since the product �8u8v8 is a matrix with the same dimensions as the
original image. Figure 20.4 gives a visual representation for each pair of singular
vectors. Each panel was created by zeroing-out all but one of the singular values.
Most of the image has been reconstructed by the time reach the final (smallest)
singular values, so representations of these singular vectors often amount to lit-
tle more than noise. Many machine learning algorithms exploit this feature by
“de-noising” inputs by zeroing-out any small singular vectors before using the
images.

20.1.1 When does compression save space?

You might have noticed in Figure 20.2 that the SVD with all 384 singular values
used more memory than the original image (175.2% of the original image size). To
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Figure 20.2: Low rank approximations for the image in Figure 20.1. The title of each panel shows the
number of singular values used in the approximation (:) and the size of the compressed image relative
to the original (%).
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Figure 20.3: The cumulative sumof the singular values inFigure 20.1 reveals thatmost of the information
is stored in the first few singular vectors. The red lines indicate the low rank approximations shown in
Figure 20.2.

see why, consider an < × = image with < ≤ =. (If < is the larger dimension, we
can rotate the image so < is smaller.) This image requires <= units of memory,
but the SVD requires

< × <︸ ︷︷ ︸
U

+< × =︸︷︷︸
Σ

+ = × =︸︷︷︸
V

T

.

units. Actually, not quite. Since < < =, we know that the extra = − < rows in
the matrix V

T will be dropped, so we don’t need to store them. (Matlab’s svd
command removes these rows by default.) Also, The matrix Σ is diagonal, so we
only need to store the < nonzero values on the diagonal. The total storage for the
full SVD is therefore <2 + < + <= units of memory, which is larger than the <=
units in the original image.

A low rank approximation with only : nonzero singular values keeps only the
first : columns of U, : entries in Σ, and the first : rows of V

T. This requires
<: + : + := = :(< + = + 1) units of storage. Compared to the <= units of memory
required to store the original image, the rank : approximation by SVD requires
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Figure 20.4: Visual representations of each pair of singular vectors. Each panel is the product �8u8v8
for a single index 8. Notice how some of the panels map to rough shapes in the original image. The first
panel (�1) shows the light from the window. The panels have been rescaled to [0, 1] before plotting.
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less memory when

:(< + = + 1) < <=

⇒ : <
<=

< + = + 1 .

20.2 Recommender Systems

Here’s a trick question: What is the missing value in the following matrix?

©­«
2 1 3
1 2 4
3 0 ?

ª®¬
It’s a trick question because the missing value could be anything. Any answer is
correct! But what if you also knew that the above matrix had rank 2? That’s an
entirely different story. There are three rows in the matrix, but only two of them
would be linearly independent. Any row in the rank 2 matrix must be a linear
combination of the other two rows. It appears that row three is twice the first row
minus the second row (2 × 2 − 1 = 3 in column one, and 2 × 1 − 2 = 0 in column
two). So the missing entry must be 2 × 3 − 4 = 2. Mystery solved.

Rank deficient matrices like the one above have a remarkable property—a low
rank approximation can sometimes be used to fill in missing entries. Filling in
missing entries using low rank approximations is called matrix completion, and it’s
a machine learning technique worth billions of dollars. These machine learning
techniques predict what a customerwill want next given their history of purchases.
Amazon shows you products that “you may also like”; Google targets ads based
on your search results and Gmail messages; and Netflix populates its frontpage
with shows it thinks you’ll enjoy. Such recommendations are not guesses, but
instead finely tuned algorithms that keep users buying products or spending time
on streaming services. The best algorithms are worth huge sums of money, as evi-
denced by the “Netflix challenge,” the company’s million dollar contest to improve
their recommender engine by 10%. The Netflix challenge was quickly shut down
due to privacy concerns. A user’s past preferences are so powerful that they can
be used to reveal their identify even if the data are anonymized.

20.2.1 Ratings matrices

Online retailers like Amazon collect product ratings from users. Consumers can
leave product reviews and rate items with 1–5 stars. We can visualize these data
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as a ratings matrix like the one below, where each row is a user and each column
is an item for sale.

item 1 item 2 item 3 item 4 item 5
user 1 4 5
user 2 1 5
user 3 3 5
user 4 2 3 4

Ignore for a second that Amazon probably has more than four users and five
items. Focus instead on how powerful it would be to have the complete ratings
matrix. Ifwe couldpredict howeachuserwould rate every product before they buy
it, we could suggest that they purchase the items with high ratings. Completing
the ratings matrix creates personalized recommendations for every user! Systems
that create recommendations through matrix completion are called recommender
systems, and they are in use by every retailer and social media site.

There are many methods for matrix completion, but one of the most popu-
lar combines several techniques from this book. The algorithm is depicted in
Figure 20.5 and is described below. A detailed description of the algorithm is
available in section 20.2.4.

1. A ratings matrix R with < users and = items contains actual ratings for a
small number of user/item pairs. The recommender randomly initializes
two rank : matrices: P: (< × :) and Q

T
:
(: × =).

2. The two matrices P: and Q
T
:
are multiplied to produce a completed ratings

matrix R̂. The complete matrix contains estimates for every user/item pair.

3. The known entries in the original ratings matrix R are compared with the
corresponding predictions in the completed matrix R̂. The disagreement
between the actual and predicted ratings are used to update the entires in
the low rank approximations P: and Q

T
:
.

4. The process iterates until the predicted ratings match the observed ratings.
The predictions for the unobserved ratings are used to make recommenda-
tions.

Recommender systems have become so ubiquitous that some databases are
optimized for performing matrix algebra on their data. Thanks to recommender
systems, matrix multiplications, linear models, and low rank approximations have
become the fundamental operations of data mining.
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1.2 5 3.9 4.7 1.9
2.1 4.3 4 4.1 2

1 2.8 3.6 5 2.7
1.8 2.0 3 3.9 3.5

us
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items

ratings matrix (R)

P:

Q
T
:

low rank approximation

1.2 4.9 3.9 4.7 1.9
2.1 4.3 3.8 4.1 2.3

1.2 2.8 3.6 5.0 2.7
1.8 2.0 3.0 3.9 3.5
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s
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parisonprediction

Figure 20.5: Recommender systems use low rank approximations to complete a ratings matrix. The
method assumes that the completed ratings matrix is the product of smaller two matrices P and Q

T,
each of rank :. Recommender systems search for values of the low rank matrices by comparing the
known values in the ratings matrix to the corresponding predictions in the completed matrix.

20.2.2 Implicit vs. explicit ratings

Rating a product on a 1–5 scale is an explicit rating. Very fewusers provide this type
of feedback, and you may be wondering how Amazon makes recommendations
to you if you’ve never rated a product. Most recommender systems use implicit
ratings from their users. Purchasing—or even viewing—an item is a form of rating,
since users typically spend their money on things they like (or think they will like).
Social media companies record how long you pause over each post when scrolling
through your feed. The length of your pause is proportional to your interest in a
post and can be used in a ratings matrix to predict what posts to show next. Every
click, pause, or “like” on the internet is stored and used to predict ratings. Even
brick-and-mortar stores use recommender systems, which is why they want you to
join their store’s loyalty card to track your purchases. (If you refuse, they can still
track purchases across visits through your credit card number.)

The one shortcoming of recommender systems is the cold start problem. Before a
company has any data on your preferences (implicit or explicit), they cannot make



184

recommendations. This explains why companies request demographic data when
you sign up or frequently request ratings on your first purchases. The sooner they
can collect data, the better they can customize their offerings to your preferences.

20.2.3 Why low rank approximations work

Ratings matrices are incredibly sparse. Most users have purchased only a tiny frac-
tion of the products available on Amazon, and despite your best efforts at binge
watching you have probably seen relatively few of the shows on Netflix. Recom-
mender systems work because users and items are remarkably low rank. Even
if Amazon has millions of customers, every customer can be reasonably approx-
imated as a combination of a few thousand “customer types”. A few thousand
sub-genres are probably all that are necessary to make personalized recommenda-
tions for movies.

An interesting observation from recommender systems is that the number of
user typesmust be equal to thenumberof categories of items. Saidmore technically,
the user rank (row rank) must equal the item rank (column rank) for any ratings
matrix, so the ranks of the matrices P and Q must be the same. Any method that
finds similar users (rows of the ratings matrix) can be used equally well to find
similar items (columns) by simply transposing the ratings matrix.

20.2.4 * Finding a low rank approximation for a ratings matrix

This section derives the update formulas used to find a low rank approximation for
a ratings matrix R containing a sparse set of known ratings. We assume the user
has specified a rank : for the low rank approximation—this is a hyperparameter
that must be tuned to improve predictions.

The completed ratings matrix R̂ is the product of two dense, rank : matrices P:

and Q
T
:
, so R̂ = P:Q

T
:
. Let’s focus on a single known rating R(D, C) from user D for

item C, which we’ll abbreviate ADC . The predicted value for this rating is

ÂDC = P:(D, :) ·QT
: (:, C).

We can eliminate the transpose on the matrix Q by remembering that column C in
the transposed matrix is the same as row C in the untransposed matrix, so

ÂDC = P:(D, :) ·Q:(C , :).

The matrices P: and Q: are initialized with small, random values, so the predicted
rating ÂDC is likely not the same as the actual rating ADC . We can update the entries
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in P: and Q: by first calculating the loss between the predicted and actual ratings.
Using a quadratic loss function, the loss for a single rating is

!(D, C) = (ÂDC − ADC)2 .

Let’s first update the entries in the matrix P: using gradient descent. The entry of
the gradient for entry ?D8 of the matrix P: is

%!

%?D8
= 2 (ÂDC − ADC)

%ÂDC
%?D8

.

The partial derivative of the predicted rating is

%ÂDC
%?D8

=
%

%?D8
P:(D, :) ·Q:(C , :)

=
%

%?D8

:∑
9=1

?D9@C 9

= @C8 .

So the gradient of the loss for entry ?D8 is

%!

%?D8
= 2 (ÂDC − ADC) @C8 .

Similarly, the gradient entry for value @C8 in the matrix Q: is

%!

%@C8
= 2 (ÂDC − ADC) ?D8 .

We can update the entries in P: and Q: using gradient descent with rules

?D8 ← ?D8 − 2
(ÂDC − ADC)@C8
@C8 ← @C8 − 2
(ÂDC − ADC)?D8

for entries 8 ∈ {1 . . . :}. Each update uses an estimate of the total loss at a single
entry in the observed ratings matrix R. The true loss function would consider all
of the known ratings, so our single-rating estimate is a stochastic gradient. Surpris-
ingly, stochastic gradient descent is a better global optimizer for many non-convex
machine learning problems and requires far less computation per iteration on large
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problems. However, stochastic gradient descent requires more iterations than de-
terministic gradient descent, and the step size 
 often needs to be smaller to ensure
stability.

Before starting gradient descent, a subset of the known ratings are held out for
cross validation. Large systems with many users and items can easily be overfit
because the low rank approximation will contain thousands or millions of entries.
A regularization term is added to the loss function to prevent overfitting, and the
best regularization parameter is determined by cross validation.

Recommender systems combine several topics from this course: matrix mul-
tiplication, rank, loss functions, gradient descent, cross validation, regularization,
and matrix decompositions. They are an excellent example of how modern ma-
chine learning depends on a solid foundation in linear algebra.
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