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Example: Optimizing stem cell differentiation

Our goal is to improve the efficiency of differentiating ESCs into mature,
insulin-producing beta cells.
◮ Factors: [Growth Factor A] and [Growth Factor B], both added during

differentiation.
◮ Response: Fraction of beta cells after 40 days [0.0–1.0].

For illustration, pretend we know the “true” response surface:
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Sequential experiments and model updates
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Exploitation vs. Exploration

The previous example used pure exploitation—using the model’s knowledge
to find the best predicted response.

Models can also be improved by exploration—placing runs in regions where
the model is most uncertain.



Model improvement by exploration

Exploration searches the model for inputs that give the most uncertain
predictions.
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Exploring via search by L-BFGS-B
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Exploring: Uncertainty whack-a-mole
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Exploring: Uncertainty whack-a-mole
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Comparing exploitation and exploration
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Should we exploit or explore?

Both. Good algorithms balance discovery and refinement.

The best balance is an open problem. Some solutions:
◮ Always dedicate some (small) fraction of your runs to exploring.
◮ Explore early, exploit later.
◮ Alternate between batches of exploration and exploitation.
◮ Use a hybrid metric like Expected Improvement.



A 1-D example (Gramacy 2020) for Expected Improvement



What happens when we consider uncertainty?



Optimizing for improving the response

A key insight in Bayesian optimization was the switch to expected improvement
(Schonlau 1997).

As usual, assume we’ve measured n responses yn at locations Xn. Define

ymax = max{y1, . . . , yn}.

The improvement in the objective at a new input x is

I(x) = max{0, y(x)− ymax}

where the maximization “floors” the improvement at zero.

The expected improvement EI(x) = E{I(x)} quantifies how much we expect
the best objective value to increase after measuring at point x.



Visualizing Expected Improvement

EI



Picking the next sample



Recalculating Expected Improvement for Round 2
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After the second update: no expectation of improvement

EI



Do sequential designs always work?

I Sequential design methods are last sample optimal.
I After N − 1 runs, sequential design finds the optimal location for the last

run.

I However, sequential design is greedy. If N − 2 of N runs are finished, two
rounds of sequential design may not be optimal.
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Limited lookahead in active learning
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What’s wrong with being greedy?

Imagine we have two runs left. There are two strategies:

1. Select both points with our current information. This ignores the new
information available in the second-to-last point.

2. Select the first point using current information and select the second point
using the updated model. The first point ignores the existence of the
second point.

The “best” solution is often a compromise between two extremes. Given a
budget of N runs and an initial design, we could

1. Place the remaining N − n runs at once using model trained on the initial
design.

2. Place the remaining N − n runs one at a time.

For example, Let N = 36 and n = 16, so we have 20 runs to go. We could

1. Place runs in 5 batches of 4 points, or
2. Place 4 batches of 4 points, followed by 4 one-at-a-time updates.
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Summary

◮ Optimization exploits a model to find the best response.

◮ However, exploration is still required to ensure the model predicts well
over all possible treatments.

◮ Characterization explores by searching for uncertain regions of the
model. The uncertain regions are in need of more data.

◮ Sometimes we limit characterization to treatments with responses in a
range of interest.

◮ Balancing exploration and exploitation is an open challenge.


