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Example: Optimizing stem cell differentiation

Our goal is to improve the efficiency of differentiating ESCs into mature,
insulin-producing beta cells.
◮ Factors: [Growth Factor A] and [Growth Factor B], both added during

differentiation.
◮ Response: Fraction of beta cells after 40 days [0.0–1.0].
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For illustration, pretend we know the “true” response surface:
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Starting with an initial design

We need an initial set of data to train our model, but we have no model to
plan these experiments.

We resort to a quasi-random, space-filling design.
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How about evenly-spaced designs (grids)?

Evenly-spaced designs have two big
drawbacks:

1. Regular spacing can alias patterns in the
response surface.

2. Regular designs have poor projection
spacing. This is a problem because not
all factors affect the resonse.
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Why not random designs?

Random design are “clumpy”, especially in high dimensions.



Latin Hypercube Designs

A Latin Hypercube Design (LHD) is a
semi-random design that guarantees uniform
projection.

I Each dimension is divided into n intervals.
I Points are placed randomly, but only one

point is allowed in each interval along
each dimension.

I Points can be placed in the center or a
random position in each "square".

I LHDs are like a simplified Sudoku puzzle!
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Beware of randomness (again)

The above design is a LHD, but it is not
very random. Rarely we can get
permutations that do not space-fill.

One alternative is an Orthogonal Array
LHD.
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Another option: Maximin Designs

What we really want is to maximize the minimum distance between the
points in the final design. We can achieve this directly via optimization.

The Euclidean distance between any two points x and x′ is

d(x, x′) = ‖x− x′‖2 =
k∑

j=1

(xj − x′
j)2

The maximin design matrix with n samples, called Xn is

arg max
Xn

min{d(x, x′),∀x 6= x′}
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Augmenting maximin designs

We can add more points to an existing design by spacing them apart from
previous points.

Original Design

Augmented Design
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Starting with an initial design

We need an initial set of data to train our model, but we have no model to
plan these experiments.

We resort to a quasi-random, space-filling design.
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Comparing our model after running the initial design

True
Response
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Searching for the next run

We need to pick the next treatment (combination of Growth Factor A and
Growth Factor B) to test. This should be the treatment predicted to give the
best response.
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Searching for the next run

We need to pick the next treatment (combination of Growth Factor A and
Growth Factor B) to test. This should be the treatment predicted to give the
best response.

Our model is a Gaussian Process Regression

fraction beta cells = GP(Growth Factor A, Growth Factor B)

trained on data from our initial design.

Given an initial guess, a nonlinear optimizer like L-BFGS-B can find the
nearest local optimum.

To find the global optimum, we restart the optimizer many times at random
points.



Searching for a global optimum by L-BFGS-B
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The true optimum was not where the model predicted. Retraining the model
moved the model’s estimate of the optimum for the next round.



Sequential experiments and model updates
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Leveraging the low cost of model predictions

Cost of our automated search:

Initial design 16 runs
+ Sequential search 6 runs

Real-world total 22 runs



Leveraging the low cost of model predictions

Cost of our automated search:

Initial design 16 runs
+ Sequential search 6 runs

Real-world total 22 runs

However, our nonlinear search used 3,235 model predictions to select
these 22 runs.



Exploitation vs. Exploration

The previous example used pure exploitation—using the model’s knowledge
to find the best predicted response.



Exploitation vs. Exploration

The previous example used pure exploitation—using the model’s knowledge
to find the best predicted response.

Models can also be improved by exploration—placing runs in regions where
the model is most uncertain.



Summary

◮ Planning begins with a space-filling design when we lack prior
knowledge.
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Summary

◮ Planning begins with a space-filling design when we lack prior
knowledge.

◮ Prior knowledge is used to find a new experiment at a better response.

◮ Restarting a local optimizer can find (approximately) global optima.

◮ True global optimization requires exploitation and exploration.


